
Leipzig University
Faculty of Mathematics and Computer Science

Institute of Computer Science

Privacy-Preserving Detection of COVID-19 in X-Ray Images

by

Lucas Lange

Master’s Thesis presented in

Computer Science

Supervisors:

Maja Schneider

Reviewers:

Prof. Dr. Erhard Rahm

Dr. Christian Martin

Leipzig, 12. January 2022





Abstract

Chest X-rays enable a fast and safe diagnosis of COVID-19 in patients. Applying Machine
Learning (ML) methods can support medical professionals by classifying large numbers of
images. However, the amount of data needed for training such classifiers poses problems
due to clinical data privacy regulations, which present strict limitations on data sharing
between hospitals. Specifically, the models resulting from ML are vulnerable to attacks and
can compromise data integrity by leaking details about their training data. Privacy-Preserving
ML (PPML) offers methods to create private models that satisfy Differential Privacy (DP),
enabling the development of medical applications while maintaining patient privacy.
This work aims at investigating the privacy-preserving detection of COVID-19 in X-ray

images. The PPML training methods DP-SGD and PATE are matched against non-private
training. The private models should mitigate the data leakage threats posed by Membership
Inference Attacks (MIAs). However, the inclusion of DP showed no improvements in MIA
defense on the COVID-19 detection task. Instead, the non-private models presented the same
repelling properties as the private models. Thus, if only the defense against MIAs is of concern,
the non-private approach achieving 97.6% classification accuracy is the best choice. Private
DP-SGD training for ε = 1 is a more sensible alternative when a theoretical privacy guarantee
is needed. The best DP-SGD model reaches 74.1% accuracy. Even though the accuracy-
privacy trade-off of 23.5% is significant, the private model performs 0.3% better than related
work and keeps much tighter privacy guarantees. Ultimately, the conflicting findings from
the additional experiments on the MNIST database, where DP significantly increased MIA
defense, indicate that PPML (or DP-SGD) is heavily task-dependent. Thus, research on one
dataset might not carry over to others.
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1. Introduction

1.1. Motivation

The COVID-19 pandemic takes health systems worldwide to their limits. Accurate and fast
tests are essential to prevent uncontrollable spreading. Detection of COVID-19 in patients can
be achieved using an inexpensive RT-PCR test1. Nevertheless, the results can take hours to
arrive. Even if displaying negative, the virus could have already left the throat and manifested
itself in the lungs, rendering it undetectable by the test. In hospitals, chest X-rays can mitigate
these drawbacks by enabling a fast and certain diagnosis [1]. Figure 1.1 shows chest X-ray
scans of a 50-year-old COVID-19 patient over the course of a week. In this example, the
patient suffered pneumonia symptoms, and the changes in the lungs are visible. Still, they
are difficult to interpret for amateurs. Specialists, in contrast, are able to identify the severity
of a case early on and can take measures without the need for lab results. Modern Machine
Learning (ML) methods can effectively support medical professionals in an initial screening
by classifying large numbers of images in a short time frame. However, the amount of data
needed for training such classifiers poses problems due to clinical data privacy regulations,
which present strict limitations to data sharing between hospitals [2].

Figure 1.1.: Chest X-ray images of a 50-year-old COVID-19 patient with pneumonia symptoms over
the course of a week. The patient suffered pneumonia symptoms. Figure from Ozturk et
al. as seen in [1], with data published by Lorente in [3].

All sensitive patient information must be treated confidentially before, during, and after
processing. To complicate matters, not only the dataset itself but also the prediction models
resulting from ML can compromise data integrity. Published classification models are vul-
nerable to attacks, ultimately leaking details about their training data [4]. Such leaks allow
adversaries to deduce private facts about individuals in the dataset. Privacy-Preserving ML
(PPML) is a collection of methods for creating private models that satisfy Differential Privacy
(DP), enabling the development of medical applications while maintaining patient privacy.
If the profound research in PPML shows anything, it is ML models are under attack. This
work aims to apply PPML procedures in the training of a classifier, thus preventing attacks
on the resulting model from incurring data leakage.

1Reverse Transcription Polymerase Chain Reaction testing is broadly used for real-time COVID-19 diagnosis.
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1. Introduction

1.2. Goals

Investigating privacy-preserving ways of detecting COVID-19 in X-ray images can be divided
into three successive steps. (i) First, a state-of-the-art non-private image classifier for chest
X-ray images is trained and optimized to detect COVID-19 vs. Normal (no findings) posing
as a baseline. This step also includes constructing a dataset of relevant scans. (ii) The second
step focuses on evaluating PPML methods, with the primary objective being to find a feasible
trade-off between privacy and consequently reduced accuracy. (iii) Finally, model security is
assessed by reconstructing the training data through attacks. The attacks examine to what
extent the models are prone to data leakage.
These steps help answer the general question proposed by this work: What is the best way

to design a private image classification model detecting COVID-19 from chest X-ray images?
Multiple other hypotheses accompany this question. These hypotheses form the experiments
used to identify the best methods for private detection. Additionally, running non-private
and private models enables comparing the influence of theoretical privacy guarantees to the
empirical results from attacks. This work also investigates the possibilities and effectiveness
of migrating PPML to different tasks since research in PPML typically concentrates on other
datasets than COVID-19 X-rays. Even though privacy is the focus, solving this task combines
many areas of research: data preparation, building a non-private X-ray classifier, adopting
different PPML methods, experimenting with model architectures, and studying attacks on
ML models. Hence, it contributes to the state-of-the-art in many ways.

1.3. Structure

After this brief introduction, Chapter 2 provides an overview of essential concepts and meth-
ods to understand the studied problems and upcoming solutions. The explanations cover
image classification mainly using ML and privacy revolving around PPML. Chapter 3 then
puts this work into context by examining existing literature on relevant topics. The related
work inspires many experiments and supports the hypotheses tested. As a central part, Chap-
ter 4 lays out the experimental setup. The chapter describes the planned experiments and
the environment for running them, including the available hardware and needed software
implementations. Moreover, empirical and theoretical reasoning justify selected approaches
and settings in the chapter. Following up on the experimental setup, Chapter 5 evaluates the
results. Potential findings are contrasted to the proposed hypotheses from theory and sim-
ilar works. In closing, Chapter 6 gives conclusive thoughts regarding earlier chapters, their
hypotheses, and the general task of privacy-preserving COVID-19 detection. The end of the
chapter then adds an outlook on possible future work.

2
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2. Background

This work builds on numerous existing fundamental concepts. These basics are continuously
applied in the following chapters of this work without always providing the complete back-
ground matter. To enable a better understanding, this chapter elaborates on such topics
relevant to the task, mainly regarding image classification and PPML.

2.1. COVID-19 Diagnosis From Images

COVID-19 is a respiratory disease that appears with the common symptoms of fever, cough,
sore throat, and difficulty in breathing [5]. A widely used COVID-19 detection technique is
RT-PCR tests. However, RT-PCR kits are prone to false negatives, and the results can take
hours to arrive [6]. To overcome the sensitivity issue, medical professionals can use chest X-
ray scans to confidently detect and diagnose COVID-19 [1]. The same can be achieved using
Computed Tomography (CT), but X-ray machines are more widely available in hospitals due
to the higher cost of the CT machines [7]. Besides, X-ray scans emit less ionizing radiation
than CT [8].
Chest X-ray images of COVID-19 infected patients contain radiological signatures in the

form of unique patterns and bilateral changes. Ng et al. [7] found that manifestation of
COVID-19 infection in the lungs is predominantly characterized by ground-glass opacification
with occasional consolidation. Multiple other studies confirm these findings [9, 10, 11]. In
general, lung opacities seem to be a strong indicator. Figure 2.1 from [12] shows two X-
rays of the same patient that both exhibit radiological characteristics related to COVID-19.
At the time of scan A the patient showed a positive RT-PCR test result, and for B then
presented a negative test but maintained COVID-19 positive antibodies. The relevant features
are highlighted and involve patchy alveolar-interstitial opacities (black arrows) and diffuse
(white arrows), with predominantly peripheral involvement and lung bases (black asterisks).

Figure 2.1.: Chest X-rays belonging to the same patient that both present COVID-19 related radi-
ological characteristics. At the time of Scan A the patient showed a positive RT-PCR
test result, and for B then presented a negative test but maintained COVID-19 positive
antibodies. The relevant features are highlighted and involve patchy alveolar-interstitial
opacities (black arrows) and diffuse (white arrows), with predominantly peripheral in-
volvement and lung bases (black asterisks). The original figure is found in [12].
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2. Background

Performing manual COVID-19 testing from chest X-ray images is time-consuming and
prone to errors [13]. Hence, there is a need for ML-based approaches that can support the
analysis of chest X-rays and accelerate the screening process through automation.

2.2. Machine Learning for Image Classification

The following sections present the ideas that enable the successful classification of images
using ML. The general background in ML cannot be covered exhaustively, as it would be
too complex for a brief theoretical background. As a fundamental topic to this work, a basic
understanding of neural networks in ML is assumed.

2.2.1. Image Classification with Convolutional Neural Networks

Image classification is a fundamental ML task that attempts to assign a specific label to an
image. Right now, the dominating techniques are based on Deep Learning (DL), a subfield
of ML, which is characterized by models stacking a large number of layers and limited by the
resulting high parameter counts [14]. The most significant advantage of DL is automatic fea-
ture extraction, which means that these algorithms automatically grasp the relevant features
to solve a problem by learning hierarchical representations [15]. Image classification is ruled
by architectures called Convolutional Neural Networks (CNNs). They are named after the
convolution, a mathematical operation simply applying a filter to the input that causes acti-
vation. Applying the same filter repeatedly to the input produces an activation map called a
feature map, which indicates the location and strength of the features detected in the input.

Figure 2.2.: Visualization of feature representations in CNNs at different levels. At a low level, they
are primarily simple edge and color detectors, while mid-level and high-level features
represent more complex forms or discriminative object parts. The high-level features in
this graphic show forms that resemble an eye, the wheels of a car, or even the complete
head of a bird. Figure from [15] by Traore et al.

With convolutions, the view can be filtered to ever smaller chunks of the image, enabling
a neural network to extract features for tiny parts before forming larger portions. CNNs
stack multiple convolutional layers as blocks and accomplish to extract image features on
different levels. A visualization of such features is shown in Figure 2.2. At a low level, they

4
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2.2. Machine Learning for Image Classification

are primarily simple edge and color detectors, while mid-level and high-level features represent
more complex forms or discriminative object parts. The high-level features in Figure 2.2 show
forms that resemble an eye, the wheels of a car, or even the head of a bird. This regional
perception shows how CNNS were inspired by the biological processes in the visual cortex [16].
Here, single neuron only responds to stimuli within a restricted area of the visual field, but
different neurons partially overlap to cover the total area.

Figure 2.3.: Illustration of the LeNet-5 architecture described in 1998 by LeCun et al. [17]. The input
image of 32x32 pixels passes through two convolutions and sub-samplings. The remaining
feature maps then reach the fully-connected layers. The results are fed into an output
layer that generates the final prediction. Most modern CNNs follow a similar strategy
but might implement new layers or change their order. Figure as seen in the original
paper [17].

CNNs excel in visual tasks. The first CNN to beat other techniques in image classification
was the AlexNet in 2012. The network was designed by Krizhevsky et al. in [18]. Although it
took CNNs until 2012 to overtake other methods, LeCun et al. [17] already described a similar
architecture in 1998. Their LeNet-5 architecture is illustrated in Figure 2.3. The input image
of 32x32 pixels passes through two convolutions and sub-samplings. Sub-sampling layers
reduce the spatial resolution of the image, which means reducing the number of pixels within
a feature map. The remaining feature maps then reach the fully-connected layers. Neurons
in a fully-connected layer have full connections to all activations in the previous layer, as
in regular neural networks. The results are fed into an output layer that generates the final
prediction. Most modern CNNs follow a similar strategy but might implement new layers or
change their order.
Apart from convolutional, sub-sampling, and fully-connected layers, relevant layers in

CNNs include:

• Activation Layer: Activation functions for convolutional and fully-connected layers can
be seen as separate following layers but are usually specified directly as a setting of the
preceding layer. A prevalent choice is the ReLU activation function.

• Output Layer: The final prediction is calculated using a classification function. The
number of classes in the ML task is represented by the number of neurons in the output
layer. There are two relevant functions depending on the task: (i) sigmoid for binary
classification with one neuron and (ii) softmax for binary or multi-class classification
with two or more neurons.

Lucas Lange
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2. Background

• Dropout Layer: A Dropout layer can mostly be found after neuronal layers2 and ran-
domly deactivates nodes of this layer. Deactivation sets a node to 0, meaning its value
is not passed to the next layer. The probability of a layer’s node being dropped is com-
monly chosen as 0.2 or 0.5. The network will have to adapt to the random change in
its architecture, which has a regularizing effect that helps with overfitting [19].

• Batch Normalization (BN) Layer: The BN layer is used to normalize inputs. The inputs
to the layer are standardized to control the change of the layers’ input distributions
during training [20]. BN is commonly found after neuronal layers to stabilize the inputs
for the next layer.

2.2.2. Passing on Knowledge With Transfer Learning

Figure 2.4.: Different learning processes in (a) traditional ML and (b) transfer learning. Compared
to just using the standard dataset (a), more information is gained from one or multiple
other datasets (b). As seen in [21] by Pan and Yang.

As humans, we encounter transfer learning regularly. After studying one programming lan-
guage, we can apply related knowledge from prior experience when learning another one,
making it more accessible. Further, we are specifically able to learn from only a few exam-
ples [22]. “For instance, medical students can rapidly learn certain abnormalities on brain MRI
images with only a handful of examples because they are already familiar with healthy brain
structures. In contrast, this may be very difficult for a non-medical student lacking previous
neuroscience knowledge.” [23] Rather than starting from zero, the human brain can connect
between similar tasks [21, 24]. Similarly, ML models can learn and improve by transferring
knowledge. At first, this seems counterintuitive since the common assumption of traditional
ML methodologies is that all data has to be taken from the same domain, and each model
is trained on a specific dataset to solve one isolated task. Nevertheless, to come closer to hu-
man learning, transfer learning tries to boost performance by carrying over knowledge from
related source tasks to the actual target task, as seen in Figure 2.4. Compared to just using
the standard dataset (a), more information is gained from one or multiple other datasets

2A neuronal layer refers to a layer that has trainable weights, e.g., convolutional and fully-connected layers.

6
Lucas Lange

3737104



2.2. Machine Learning for Image Classification

(b). Transfer learning aims at making use of the DL principle that more data equals better
performance [25].
Transfer methods can be characterized by what is being transferred. In this work, the

focus is on transferring knowledge using shared parameters between source and target domain
models [26, 27]. Effectively, this means passing on the learned structure represented in the
weights of a source model. A common strategy in DL is to use the weights of the source
model as starting weights for the target model instead of randomly initializing them. This
method is called pre-training since the layer weights are already adapted to the source task
and data, before the actual training. In this way, the previously gained similar knowledge
is maintained, and the weights can be fine-tuned by further training in the actual target
domain. In the simple case, the source and target models have the same architecture, and
weights can be copied for all layers. It is slightly more difficult if models are different, but
copying a selection of matching layers can still result in a positive transfer.
Another factor for tuning a pre-trained model is freezing certain layers. Freezing a layer

means its weights are made static, so they are not adjusted while training and stay at
their transferred value. This method can help when the training process initially changes
the weights too fast, destroying the initial advantage from pre-training. One way to re-
duce the unlearning of transferred weights can be by lowering the learning rate. There is
no straightforward way of deciding which and how many layers to freeze, and it can thus be
a hyperparameter to tune. The most common strategies are: freezing all layers, freezing all
layers except for the output, freezing only the first or second half of layers, and not freezing
any layers. A major drawback of freezing layers is that it hinders the adaptation abilities to
the target task. [28]
A unique system for knowledge transfer is teacher-student learning. The teacher is a source

model or a whole ensemble of source models, while the student model represents the target
model. Here, instead of direct weight exchange, source models teach a target model by influ-
encing its learning process. The goal for the student is to achieve the same predictions as the
teacher models. So, given a single training sample, the student’s loss is the difference between
the teacher prediction and student prediction. The student’s weights are then adjusted to get
closer to the teacher’s output. In this way, the weights are influenced through training instead
of simply setting them as starting weights. Thereby, the actual architectures of the models
are made irrelevant. The teacher-student approach can also be used after initial training and
thereby offers a way to adapt a student model to a new domain later on. [29]
An ML algorithm can benefit from transfer learning in three ways: (i) boost the initial

performance level before any further training is done, (ii) reduce training time requirements
compared to learning from scratch, (iii) raise the final level of achievable performance [24].
One or all of these benefits may apply in a given instance. Figure 2.5 shows a graphical inter-
pretation of the possible positive performance changes in a transfer learning setup compared
to traditional ML. Negative transfer occurs when a transfer method decreases performance.
Torrey and Shavlik [24] name positive transfer as one of the major challenges in developing
transfer methods. The main culprit is the use of less related source tasks, showing that the
effectiveness of transfer methods is fundamentally defined by selecting suitable information
to pass on.
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Figure 2.5.: Three possible ways of transfer learning improving model performance. An ML algorithm
can benefit from transfer learning in three ways: (i) boost the initial performance level
before any further training is done, (ii) reduce training time requirements compared to
learning from scratch, (iii) raise the final level of achievable performance [24]. One or all
of these benefits may apply in a given instance. Figure from Torrey and Shavlik [24].

After grasping what transfer learning does and what is gained from it, some use cases show
the practical implications. As already seen with teacher-student models, transfer learning
can be a more straightforward solution than training a whole new model from scratch when
domain adaption is needed. Also, the implied data distribution changes are problematic for
most statistical models because they need to be rebuilt based on the new data. Such changes
could happen when new data is collected, existing data is updated, or data generally changes
over time. Another problem tackled with transfer learning is the lack of labeled training data
for a given target task. The vast amounts of data needed for effective DL require expensive
collection and labeling endeavors. With transfer learning, information from closely related
domains can be used for pre-training, effectively enlarging the available data. For clarification,
Pan and Yang [21] give the following example:

We consider the problem of sentiment classification, where the task is to au-
tomatically classify the reviews on a product, such as a brand of camera, into
positive and negative views. For this classification task, we need to first collect
many reviews of the product and annotate them. We would then train a classifier
on the reviews with their corresponding labels. Since the distribution of review
data among different types of products can be very different, to maintain good
classification performance, we need to collect a large amount of labeled data in
order to train the review-classification models for each product. However, this
data-labeling process can be very expensive to do. To reduce the effort for anno-
tating reviews for various products, we may want to adapt a classification model
that is trained on some products to help learn classification models for some other
products.

In conclusion, transfer learning can considerably reduce the labeling effort in these cases [30].
Similarly, this also implies a reduced need for training data from the actual target domain [31].

2.2.3. Classification Metrics

In this section, a glossary explains the (image) classification metrics used in this work.
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• Classification Accuracy: A model’s (classification) accuracy measures its ability to dis-
tinguish the target classes. It is the percentage of correctly classified samples over all
tested samples. If the model gives the correct prediction for half of the samples, its
accuracy is 50%.

• Precision: Precision is the proportion of positive predictions that was actually correct.
A model with a precision of 0.5 is correct 50% of the time when predicting a positive
case.

• Recall: Recall is the proportion of actual positives that were identified correctly. A
model with a recall of 0.5 correctly identifies 50% of all positive cases.

2.3. Data Privacy in Machine Learning

This privacy-centered section poses as a broad introduction to PPML and its accompany-
ing challenges. The content elaborates on some of the possible threats to ML and explains
corresponding privacy-preserving techniques.

2.3.1. The Dangers of Publishing Data

The field of Privacy-Preserving Data Publishing (PPDP) focuses on making private datasets
publicly available. The needed privacy is achieved by anonymization before release, i.e., re-
moving private details or replacing them with random values. The common strategies resolve
around k-anonymity, l-diversity, and t-closeness [32]. However, the more privacy is offered, the
more utility is destroyed, potentially rendering the data useless for further analysis. Moreover,
re-identification can be done on anonymized data. A recent famous example is an attack on
a private movie rating dataset offered for a challenge by Netflix3. Because members of the
database also publicly shared ratings on IMDb, an online database for film and television con-
tent, linking information from both data sources allowed the recovery of their identities [33].

2.3.2. Privacy-Preserving Machine Learning

PPML, in contrast to PPDP, revolves specifically around creating private ML processes, re-
gardless of the privacy attributes a given dataset contributes. The methods should prevent
data leakage from the resulting ML model. Achieving a private model is a vital step when
public availability is envisioned, since an adversary could disclose information from models
using attacks. This section discusses possible defense mechanisms mainly based on DP. DP
is an ever-present core concept in privacy preservation, constituting a measurable privacy
standard. In PPML, DP is most commonly achieved through applying random noise in dif-
ferent stages of ML. Because of this noise, PPML is subject to a comparable utility-privacy
trade-off as PPDP since higher noise leads to more security but less performance.

3More information on the challenge: https://www.netflixprize.com/
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2.3.2.1. The Concept of Differential Privacy

An ever-present concept and gold standard metric in private data publishing and processing
is DP, which offers a guarantee that the removal or addition of a single database item does
not (substantially) affect the outcome of any analysis [34]. Thus, an attacker should not be
capable of differentiating which of the neighboring datasets was used for the results and, in
the optimal case, has to resolve to a wild guess—i.e., a coin flip. The privacy guarantee is
measured by the worst-case scenario given as the theoretical upper bound of privacy loss. This
upper bound is represented by the privacy budget ε. It is accompanied by the probability of
privacy being broken by accidental information leakage, which is denoted as δ and depends
on the dataset size. Formally, an algorithm A training on a set S is called (ε,δ)-differentially-
private, if for all datasets D and D’ that differ by exactly one record:

Pr[A(D) ∈ S] ≤ eεPr[A(D′) ∈ S] + δ (2.1)

Meaningful privacy guarantees should fulfill ε ≤ 1 and δ ≤ 1/n, where n is the number of
training samples in the dataset [35]. Still, for example, Apple stated to use privacy budgets ε
between 2 and 8 when collecting user data from their features, and studies found the actual
loss to be even higher [36, 37, 38]. The notation ε =∞ is used to indicate that no DP criteria
are met. In computational practice, DP is accomplished by adding enough statistical noise
in a randomized algorithm so an attacker cannot notice any significant difference between
neighboring query outputs [39]. Intuitively, the applied noise interferes with the algorithm’s
effectiveness, introducing a utility-privacy trade-off.
There are two common mechanisms used for sampling random noise in DP algorithms: the

Laplace noise mechanism and the Gaussian noise mechanism [40]. Since they guarantee DP by
adding some controlled noise level on every iteration, they are named additive-noise mecha-
nisms. Their main difference is the underlying distribution from which they draw noise—here,
Laplace and Gaussian distribution. The noise scale determines the possible space for the dis-
tributions to draw from, where a greater noise level provides better privacy. However, just
how much noise is needed at every step? The noise scale parameter regulates how much pri-
vacy loss is added with each query. Suppose a dataset is queried with a function. In that
case, the sensitivity of the function states the largest possible impact one record can have on
the value of the function, which in return is the amount of uncertainty needed to hide any
single contribution [35]. Consequently, the noise scale must be calibrated to the given sen-
sitivity. When algorithms are designed with additive-noise mechanisms, privacy is measured
by the accumulated privacy loss given as the privacy budget ε. The general goal is to use
these mechanisms to perturb each query. Abadi et al. [41] created the moments accountant,
a privacy accountant that keeps track of these moments of privacy loss. It thereby allows the
estimation of the resulting bounds from all queries. In addition to the sensitivity, the applied
noise at each query must adhere to the desired accumulated ε value.
The modular design of DP algorithms is possible because of one of DP’s fundamental prop-

erties: composability. It states that “if all the components of a mechanism are differentially
private, then so is their composition” [41]. Another essential attribute of DP is its post-
processing immunity, implying DP is preserved by all further processing. Therefore, training

10
Lucas Lange

3737104



2.3. Data Privacy in Machine Learning

a classification model on an already DP conform dataset or in a DP ensuring way both results
in a private model [42]. In theory, a DP-conform model can be released without the need for
further privacy tweaks.

2.3.2.2. Methods of Privacy-Preserving Machine Learning

This section goes over the most relevant approaches to PPML to give a general background
in the topic. The typical way of applying DP is by adding noise in different stages of ML. In
general, DP procedures can be differentiated between local and global DP. In PPML, local
DP applies some noise to each training sample during training, while global DP, in contrast,
adds noise only to the outputs of the released model and thus allows for a standard training
procedure without noise [43]. These two techniques, known as private training (local DP)
and private prediction (global DP), are the leading contenders in the PPML space. In private
prediction, no model is released, but instead, users query the model through an appropriate
interface [44]. Thus, only predictions are prone to attacks and need to be noisy. Private
training, on the other hand, enables the publication of the entire model by incorporating the
required random noise into the ML training process [45]. However, introducing randomness
into the training can worsen the accuracy-privacy trade-off.
The different forms of perturbation in ML include [4, 35]:

• Input Perturbation: Adding noise to the input data itself. After the following non-private
processing steps on the noisy input, the output would still be differentially-private due
to the post-processing immunity [42].

• Output Perturbation: Adding noise to query results (predictions). Answering too many
queries without increasing the noise level can violate DP, which can make a limit on
the maximum number of queries necessary [46].

• Objective Perturbation: Adding noise to the optimization problem, i.e., the objective
function. This method perturbs the objective function before optimizing it [47].

• Algorithm Perturbation: Adding noise to intermediate values in iterative algorithms—
e.g., gradient perturbation adds noise to gradients. The total amount of noise is com-
posed over iterations [41].

The Differentially Private Stochastic Gradient Descent (DP-SGD) algorithm as proposed
by Abadi et al. in [41] takes widely used SGD and applies gradient perturbation while train-
ing to ensure DP. Thus, the algorithm adds random noise to gradients when processing a
minibatch and applies privacy protection to a single sample from the training dataset at a
time. The workings of the DP-SGD algorithm are detailed in Figure 2.6. The used notations
are θt for model parameters, ∆L(θt) for gradients w.r.t. the parameters, and η for learning
rate. Conventional SGD is shown in the lower part of the figure. Here, the gradients are
computed, after which the current parameters are updated by directly applying the gradients
with a given learning rate to get the new set of parameters. However, as seen in the upper
part, in DP-SGD before updating, the gradients are clipped to a predefined maximum Eu-
clidean norm. Clipping is important to bound the influence of individual samples [49]. In a
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Figure 2.6.: Workflow representation of the gradient updating steps in the DP-SGD algorithm. Con-
ventional SGD is shown in the lower part updating parameters by directly applying gradi-
ents. The DP-SGD related additions of clipping and noise are depicted in the upper part.
Notations are θt for model parameters, ∇L(θt) for gradients w.r.t. the parameters, and η
for learning rate. Illustration from Rahman et al. in [48].

second step, random Gaussian noise is added to the clipped gradient to achieve DP conform
perturbation. Regarding the needed noise scale, it is only necessary to add just enough to
hide the largest gradient in a batch, as that is the sample that is at most risk of exposure [50].
Since clipping ensures each gradient has a known maximum norm, finding the largest possible
gradient is trivial. The noisy gradients are then used to update the parameters as usual. Gen-
erally speaking, a larger dataset allows adding less noise to each gradient since the sampling
probability for a single example is reduced. In the same way, training for more iterations
requires adding more noise. For the most part, the amount of noise added through the algo-
rithm determines the provided privacy budget ε, and the resulting private model suffers a hit
in model accuracy linked to this chosen privacy guarantee.
Private Aggregation of Teacher Ensembles (PATE) is a different attempt at private learn-

ing described by Papernot et al. in [52], which uses the coordination of several ML models to
achieve its privacy promise. As an implementation advantage, the learning algorithms them-
selves rest untouched as opposed to DP-SGD. The original version was extended and refined
in [53] to better scale and reduce noise while still offering better privacy guarantees. Papernot
presents the simple intuition behind PATE in a blog post [51]: “If two different classifiers,
trained on two different datasets with no training samples in common, agree on how to clas-
sify a new input example, then that decision does not reveal information about any single
training example. The decision could have been made with or without any single training
example, because both the model trained with that example and the model trained without
that example reached the same conclusion.” To achieve this, they follow a three-step process
broken down in Figure 2.7. The dataset is first split into a selected number of distinct subsets,
on each of which a separate public ML model is trained, called a teacher. The second step
is to take an input sample and get a common prediction from the trained teacher ensemble.
In noisy aggregation, noise is added when combining the individual predictions made by the
teachers to reach a single common prediction. The aggregation is carried out by counting the
class prediction of each teacher as a vote and then applying noise to the vote counts using a
noise mechanism. The noise scale depends on the desired privacy budget ε, and intuitively,
its influence on the votes is less pronounced the more teachers are voting. Thus, splitting the
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Figure 2.7.: Three-step training process employed by the PATE algorithm. The dataset is split into
distinct subsets, on each of which a separate ML model is trained, called a teacher. The
second step is to take an input sample and get a common prediction from the trained
teacher ensemble. In noisy aggregation, noise is added when combining the individual
predictions made by the teachers to reach a single common prediction. The aggregation
is carried out by counting the class prediction of each teacher as a vote and then applying
noise to the vote counts using a noise mechanism. The class with the highest noisy count
is the final noisy prediction. The third and last step trains a final student model. The
student uses inputs from a set of unlabeled public data. The public samples are labeled
by the noisy aggregation of the teacher, making the resulting student model private [42].
Image from a blog post of Papernot and Goodfellow [51].

dataset more often reduces the accuracy-privacy trade-off, as long as the resulting subsets
are big enough for teacher training. The class with the highest noisy count is the final noisy
prediction. In theory, this process would already allow for private prediction. However, if the
entire model was to be released, access to the public teacher parameters would destroy the
privacy guarantees. Therefore the third and last step introduces a countermeasure in training
a final student model, which undergoes privacy-preserving transfer learning from the teach-
ers. The student uses inputs from a set of unlabeled public data. This data is distinct from
the teacher training sets and must be put aside beforehand. The public samples are given to
the teacher models for labeling using the noisy aggregation mechanism, which responds with
noisy private labels. Training on the privatized data, results in a private student model due
to the post-processing immunity of DP [42]. The private student model can then be published
with the full privacy guarantee.
Generative Adversarial Networks (GANs) offer the possibility of artificially enriching a

dataset by learning the statistical distribution of training data and afterwards allowing to
synthesize samples from the learned distribution [54, 55]. Nevertheless, GANs are not only
interesting for enlarging the training set but also for preserving its privacy, as shown in mul-
tiple use cases like big data publishing, face de-identification, and vehicular camera data [56,
57, 58]. In these cases, a GAN is trained using PPML techniques to guarantee DP, resulting
in a DP-GAN that subsequently creates DP conform training samples of solely synthesized
images based on the original data. For example, DP-SGD can be used for private GAN train-
ing [59, 60]. The general approach is in parts comparable to PATE since the GAN creates

Lucas Lange
3737104

13



2. Background

a private dataset for a student model to train on and also matches PATE in performance
while offering a more general framework [61]. When using the generated differentially pri-
vate dataset, the post-processing immunity of DP allows training a private model utilizing
non-private training [42].
Applying privacy at a different time, the (sub-)sample and aggregate framework aims at

responding to queries whose answers can be approximated based on only a small number of
samples while ensuring DP [62]. As Ji et al. further describe the algorithm in [63], it first goes
through a sampling step, where the dataset is split into many small subsets and estimates the
answer on each. In the following aggregating step, all subset results are combined to estimate
a model while simultaneously adding noise. It, therefore, replicates the PATE algorithm but
omits the student. As an advantage, no accuracy is lost through private training, and the
framework solely strives for private prediction, where the model itself is not released.
Lately, the Federated Learning (FL) framework surged in many areas since it removes the

need for central computation and hence allows data to stay locally within each participating
institution [64]. The distributed learning protocol jointly trains an ML model without the
data leaving the users’ devices. Instead, each device calculates model updates and sends them
to a central party, aggregating them to generate a shared model. In this setup, the need for a
central aggregator can pose risks to data privacy. A possible combination of techniques is FL
and Secure Multi-Party Computation (SMPC), which strives for parties to jointly compute a
function over their inputs and at the same time keeps those inputs private [65, 66, 67]. While
ensuring a secure distribution of gradients inside the FL network, neither FL nor SMPC
ensures DP [68]. Thus, there is no guarantee for DP through the FL algorithm itself, leading
to a need for PPML training methods to be employed. Geyer et al. [69] demonstrate a way
of keeping DP in FL that only leads to marginal performance losses. They do not aim to
protect a single data point’s contribution but rather to protect a whole client’s data set,
rendering a single client’s contribution untraceable. The main downside is that the number
of participants has to be sufficiently large, i.e., over 1,000 and up to 10,000 clients. Instead of
counting on effective obfuscation through client numbers, Malekzadeh et al. in [70] employ
DP-SGD in the FL framework to guarantee DP. The DP-SGD operations are not applied on
the batch level but the gradients at each node in the FL ensemble. With this method, they
lose about 4% accuracy compared to non-private methods, providing an ε of 11. Still, using
more clients results in a better accuracy-privacy trade-off since with more clients, more noise
can be distributed over the ensemble without heavily impacting performance [71].

2.3.2.3. Attacks on Machine Learning Models

When it comes to attacks on ML models, the focus in this work is on published models
and information extraction. The granted public access to a model is either white-box (access
to a model’s feature vectors) or black-box (access only to model predictions). While black-
box access is more secure on paper, all these models are open to threats on different levels.
Al-Rubaie and Chang [4] differentiate between three main types of attacks as illustrated in
Figure 2.8. The upper part illustrates how model inversion attacks and reconstruction attacks
can retrace the training path from the published model over the feature vectors back to the
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Figure 2.8.: Overview of the different attacks on ML models. The upper part illustrates how model
inversion attacks and reconstruction attacks can retrace the training path from the pub-
lished model over the feature vectors back to the raw data. On the other hand, the second
half of the image shows how in MIAs specifically trained attack models can be used to
elicit information from a model. Adapted from Al-Rubaie and Chang [4].

raw data. On the other hand, the second half of the image shows how in MIAs specifically
trained attack models can be used to elicit information from a model. The overview supports
the following explanations for each attack, which are mainly based on the descriptions by
Al-Rubaie and Chang [4]:

1. Reconstruction Attacks: An adversary tries to reconstruct the private data from the
feature vectors. Therefore, white-box access to the ML model is required to succeed.
Support-Vector Machines (SVMs) or the k-Nearest Neighbors algorithm (k-NN) are ML
approaches that problematically store feature vectors in the model itself, allowing easy
access. To give a successful example, an attack by Feng and Jain [72] reconstructed a
fingerprint image (raw data) from only a minutiae template (features).
Defense: Restricting users to black-box access to the published model protects the
feature vectors. Models storing explicit feature vectors should be avoided or not pub-
lished. Further, synthesizing feature vectors through model inversion attacks should be
prevented.

2. Model Inversion Attacks: Here, an attacker either has (i) white-box access to the model
revealing internal information but without stored feature vectors, or (ii) black-box ac-
cess. The goal is synthesizing feature vectors mirroring the ones used for a model’s
creation. These are attained by exploiting confidence information (e.g., probabilities)
regarding predictions based on submitted testing samples. Taking the output of multi-
ple queries can produce an average characterizing a specific class, which could, in turn,
represent a single individual, e.g., in face recognition. Fredrikson et al. achieved such
re-identification in [73], where inversion attacks were able to extract targeted faces.
Furthermore, since the features directly matched the raw data (images), they needed
no further reconstruction attack.
Defense: Only black-box access should be granted while also limiting the output to re-
duce gained knowledge. Such limiting measures could be rounding confidence scores as
seen in [73] or entirely omitting them as in [74], where they only delivered class labels.
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3. Membership Inference Attacks (MIAs): Given a model and a sample, these attacks try
to figure out if the sample was part of the model’s training dataset based solely on
its prediction outputs on the sample. If successful, the membership of an individual’s
record in the set could be disclosed. To gain insights, the technique takes advantage
of the differences in predictions made on samples used for training versus unseen ones,
where the former is expected to deliver higher confidence values. Attack models, as
proposed by Shokri et al. in [75] take the correct label of a sample and the target
model’s prediction as inputs to decide if they existed in the training set. Creating such
models uses multiple shadow models trained on input data having roughly the same
distribution as the target’s data. The needed data can be obtained by different methods
like model inversion attacks, statistics-based synthesis, or noisy similar real data. The
finished shadow models are then used to train the actual membership classifier. Training
and performing attacks only needs to utilize black-box access, while white-box access
can help with further insights regarding the original data. [75]
Defense: In this regard, Shokri et al. [75] showed that limiting the model outputs to only
return a class label instead of confidence values was an effective and straightforward
defense mechanism. Still, they could not achieve complete mitigation of the attack. The
concept of DP should be able to oppose and limit MIAs by design [75, 76]. However,
only by simultaneously decreasing the utility of the ML model, as investigated in [48].

2.3.2.4. Diving Deeper Into Membership Inference

To better grasp why MIAs threaten to leak critical information, assume this example from a
blog post by Boenisch [77]:

Imagine you are in a clinical context. There, you may have an ML model that
is supposed to predict an adequate medical treatment for cancer patients. This
model, naturally, needs to be trained on the data of cancer patients. Hence, given
a data point, if you are able to determine that it was indeed part of the model’s
training data, you will know that the corresponding patient must have cancer. As
a consequence, this patient’s privacy would be disclosed.

The success of MIAs against models strongly relates to the memorization effects present in
ML [78, 79]. During training, a model aims at perfecting its classification of the given data.
This focus can lead models to simply learn a perfect representation of their training data.
When models start to mainly memorize the labels of their training data instead of learning
a general classification, they sacrifice their ability to generalize to new data. This problem
is called overfitting and is closely linked to memorization [78]. Overfitting is a core difficulty
of ML classifiers and one of the main amplifiers for MIAs [80]. Since it represents a model’s
inability to generalize, overfitting can be measured by the train-test accuracy gap, which is
the difference between a model’s accuracy on its training and test data [81]. The carried
memorization is reflected in a model’s predictions, favoring known samples through higher
confidence values. MIAs can then exploit this effect to determine which image was part of
the original training data.
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Using thresholds is a basic way of performing MIAs. A threshold-based attack takes the
returned confidence scores when predicting on a sample and decides about its membership
based on a set boundary value that constitutes the threshold—a method based on [82]. As a
simple differentiating method, this can be a rather naive approach to membership inference.
In general, utilizing ML to differentiate is expected to be slightly better than thresholds in
MIAs [80].

Figure 2.9.: Visualization of the MIA pipeline for attack model training using shadow models and their
usage as described in [75]. The final attack model is a collection of several models—one for
each output class in the target model. In order to train each class-specific attack model,
k shadow models are constructed. Those models are supposed to imitate the behavior
of the target ML model. The shadow training data is known to the attacker, allowing a
distinction between ’in’ and ’out’ regarding membership. Each shadow model’s predictions
mimic the target model, but training images are classified as ’in’ and test images as
’out’. The resulting dataset gathered from all k shadow models can then be used to train
an attack model to distinguish the ’in’ and ’out’ samples based on the corresponding
confidence values. After training one attack model for each output class in the target
model, the attacker queries the target model with a sample. The corresponding class-
specific attack model then handles the emitted class prediction and states the sample’s
membership probabilities in terms of ’in’ and ’out’. Graphic from Rahman et al. in [48].

In their ML form as introduced by Shokri et al. in [75], MIAs aim at constructing an attack
model that recognizes the differences in a model’s emitted confidence values. Its training
utilizes shadow models to imitate the target’s behavior, and the whole process is visualized
in Figure 2.9. The final attack model is a collection of several models—one for each output
class in the target model. In order to train each class-specific attack model, k shadow models
are constructed. Those models are supposed to imitate the behavior of the target ML model,
which is supported by drawing their shadow training data from the same population as the
target model’s data. However, the shadow training data is known to the attacker, allowing
a distinction between ’in’ and ’out’ regarding membership. Each shadow model’s predictions
mimic the target model, but training images are classified as ’in’ and test images as ’out’.
The resulting dataset gathered from all k shadow models can then be used to train an attack
model to distinguish the ’in’ and ’out’ samples based on the corresponding confidence values.
The learned classification also applies to the target since the shadow models imitate it. Shokri
et al. claim that the higher the chosen number of shadow models k, the better the resulting
class-specific attack model [75]. After training one attack model for each output class in
the target model, the attacker queries the target model with a sample. The corresponding
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class-specific attack model then handles the emitted class prediction and states the sample’s
membership probabilities in terms of ’in’ and ’out’.
In a subsequent work to Shokri et al. [75], Salem et al. [83] relaxed the prerequisite of using

shadow models during training. Their adversary does not need shadow models and relies solely
on the target model’s outputs. Thereby, no training of any approximating shadow model is
required. Boenisch [77] describes the target model in this setting as “a shadow model that
approximates its own behavior perfectly”.

2.3.3. Privacy Metrics

In this section, a glossary explains the privacy metrics used in this work.

• Privacy Budget ε: As introduced in Section 2.3.2.1, the privacy budget ε gives a theoret-
ical upper bound of privacy loss regarding a DP guarantee. The achieved value primarily
depends on the applied noise scale. If no DP is guaranteed, the privacy budget is given
as ε =∞.

• MIA Accuracy: The accuracy of an MIA states how accurately it can classify samples as
inside and outside of the target’s training set. It is the percentage of correctly classified
samples over all tested samples. If the model gives the correct prediction for half of the
samples, its accuracy is 50%.

• MIA AUC: AUC stands for Area Under the Curve, which refers to the ROC curve
(Receiver Operating Characteristic curve). That is a graph showing the performance
of a classification model at all classification thresholds. The AUC then provides an
aggregate measure across all possible classification thresholds. In that, it ultimately
represents the probability that a randomly chosen positive sample is ranked higher
than a randomly chosen negative sample [84]. AUC says how successful the attacker is
at recognizing which example was part of the original training set. An optimal defense
results in an AUC of 0.5 or lower, which translates to an attacker randomly guessing
the membership of a sample. An AUC of 1 means that an attacker can always identify
the correct membership.

• Empirical Privacy Budget εAUC : The empirical privacy budget εAUC is based on the
AUC of an MIA and relates it to the theoretical privacy budget metric. The AUC values
achieved by the attacks are used to estimate the corresponding privacy guarantee of
the target model. An AUC of 1.0 results in an εAUC =∞, while values lower or equal
0.5 translate to the perfect guarantee of εAUC = 0. In between these boundaries, the
epsilon is estimated based on the following formula: εAUC = ln( AUC

1−AUC ). This notion
is adapted from the recent work of [85], where they propose this metric based on MIA
accuracy. With a value given as a privacy budget, its comparison to the theoretical
assumptions is more intuitive.
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The related works covered in this section pose as comparative data points and as inspiration
for solving the COVID-19 task. Therefore, the focus when selecting literature is on works
regarding the classification of X-ray images, preferably COVID-19 detection. Section 3.1
resolves around different approaches to non-private classification and lays out the problems
arising from limited data availability. Section 3.2 then surveys the available solutions for
privacy preservation when handling ML tasks on X-ray images. Each approach’s results are
briefly compared to the achievements on other tasks to enable better contextualization in the
domain of PPML. The final Section 3.3 reviews the use of attacks in other works and shows
how they can help to evaluate a model’s privacy.

3.1. X-Ray Image Classification

In a general setting, the dominating technique in image classification is DL, specifically in
the form of CNNs. CNN’s stack multiple layers as blocks and are designed to automatically
extract image features by learning spatial hierarchies [15]. In 2012 the AlexNet by Krizhevsky
et al. [18] was the first CNN to top the ImageNet challenge, a famous image classification task.
Their dominance is held in many tasks, even when comparing them to new state-of-the-art
techniques like transformers [86]. Yamashita et al. [87] found that their strong performance
carries over into radiology but is hampered by small datasets and resulting overfitting—a
central concern in this work due to the insufficient availability of COVID-19 scans. They also
describe techniques to tackle these problems, involving regularization (e.g., dropout, weight
decay), data augmentation, operating on a train-validation-test split, and transfer learning
(e.g., on ImageNet). An approach to enlarge X-ray datasets synthetically by Loey et al. [88]
takes existing COVID-19 images and uses a GAN to create more training images. Sedik et
al. [89] then found an average increase of 4% to 11% in COVID-19 detection from a GAN-
enlarged training set, reaching 99% accuracy in their COVID-19 classification.
When examining existing approaches, the comparability of results poses difficulties due

to the lack of a common dataset. Related works span the whole pandemic timeline, with
different amounts of data publicly available at each point in time. At the time of this work,
the COVID-19 Radiography Database4 provides the most comprehensive collection containing
3,616 COVID-19 positive cases [90, 91]. Still, even this collection does not provide a defined
test set. Having a common test set would greatly improve the comparability of results. Related
work on this dataset should give the most recent insights on the achievable performance in
this work.
Different architectures and variations of CNNs find use in COVID-19 detection. On the

binary classification of COVID-19 vs. Normal (no findings), the classification accuracy rou-
tinely surpasses 90%, and the ResNet50 architecture consistently demonstrates strong results
of up to 98% [92, 93, 94, 95, 96]. In [1] Ozturk et al. find that their proposed DarkCovidNet
model, a tailored approach, reaches the same 98% as the ResNet50 while being only 5% of

4Available on Kaggle: https://www.kaggle.com/tawsifurrahman/covid19-radiography-database
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its size in terms of parameter count. The creators of the COVID-19 Radiography Database
achieved over 99% on their dataset using a ResNet18 [90].
In using CNNs, the feature extraction is left to the deep neural network, yet using hand-

picked features for COVID-19 in conjunction with CNN’s suggests leading to further im-
provements in terms of accuracy and sensitivity [97]. However, the implementation of such
handpicked hybrid systems is specific to a given task, reducing the transferability of the
achieved solutions.
With the FL framework, the need for a centralized training procedure would become obso-

lete, enabling easier data sharing between hospitals. Feki et al. utilize this approach in [98] and
almost match the central setting with an accuracy of 97% in their collaborative process—with
data split between four clients using ResNet50 models.
The presented works in this section do not ensure DP in their proposed models. Concerning

the focus on PPML in this work, the non-private baseline’s performance still holds importance
in the context of the private models building on the same ML pipeline. After essaying the
studies on comparable data, achieving an accuracy of close to 98% for the best non-private
model would be the optimal starting position.

3.2. Training Private X-Ray Classifiers

What impedes the evaluation of works on privacy-preserving classification is that the inves-
tigations are not linked to a uniform privacy budget. Each study uses other values in its
evaluation, reducing the general comparability of the results. This work expects ε = 1 for a
sufficient privacy guarantee while other publications are less restrictive.
Abadi et al. presented the DP-SGD algorithm in [41] where they reached 90% at ε = 0.5 and

95% at ε = 2 on the MNIST task of classifying handwritten digits. Compared to the original
model, the loss in accuracy amounted to 8.3% and 3.3%, respectively. [99] on the other hand,
shows a private DP-SGD model that only loses by 1.3% to its non-private variant. Testing
DP-SGD on the remotely related task of differentiating two kinds of X-ray images, as done
with the approach in [100], revealed a loss of 10% when achieving the accuracy of 85% with
a promised privacy guarantee of ε = 1.64. A recent PPML study on medical data utilized
DP-SGD on a general chest X-ray classification task showing a steep utility-privacy trade-off
with an average drop in accuracy of 35% from DP at ε = 0.84 [101]. Their results unveil
limitations of methods for DP learning in health care. A paper by Singh et al. [102] classified
pneumonia X-ray images using DP-SGD and obtained about 79% while getting 90% of non-
private performance—a difference of 11%. They did not include the spent privacy budget,
only publishing the used noise scales. The literature review unveiled no further studies using
standard DP-SGD on the general classification of X-ray images, let alone COVID-19.
In the original paper by Papernot et al. [52], their PATE algorithm attained 98% accuracy

at an ε = 2 on the MNIST dataset. This result runs only 1.2% behind the non-private
version. Using PATE on the COVID-19 X-ray detection task at an ε close to 6, [103] reached
an accuracy of 71% in the resulting private model while the original non-private model held
94.7%. That makes for a loss of 23.7%, all the while, a privacy budget of almost 6 is already
significantly higher than the proposed target value of 1.
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Literature on PPML in medical image classification commonly implements the FL frame-
work. While the framework does not provide DP, it has room for applying additional mech-
anisms at different points. A recent work by Malekzadeh et al. [70] employs DP-SGD in the
FL framework to guarantee DP. The DP-SGD operations do not apply to the batch level but
the client level in the FL ensemble. This method loses about 4% at an ε of 11 compared to
non-private methods. [104] performed FL in conjunction with DP-SGD on the task of pneu-
monia detection from X-rays reaching 85% at an unknown level of privacy and the accuracy
was on average reduced by 12% when applying DP. Not conforming to the FL framework but
also using collaborative learning strategies, Yuan et al. [105] add Gaussian noise to sharing
parameters when learning for the same task of detecting pneumonia in X-ray images. Their
accuracy loss at privacy budgets of 2 and 0.5 are only 4% and 6%, respectively, showing that
a collaborative model can effectively learn with DP. Another study that merges DP-SGD and
FL by Ho et al. [71] aims at COVID-19 detection and accomplishes a non-private result of
93.8%. When applying DP, they quickly noticed a performance loss that diminishes by in-
creasing the number of clients. When using their highest number of 300 clients, they achieve
73.8% but at a mere privacy guarantee of ε = 39.4. From the theoretical point of view, 39.4
is no feasible privacy budget [35].
When comparing DP-GANs to other strategies, [61] showed that the results on the MNIST

dataset slightly outperform the PATE algorithm by 0.3%, reaching 98.3%. Due to a lack of
methods to track their theoretical privacy guarantees, the authors give an estimated privacy
budget of 5.8, which is significantly higher than the ε of 2 used in the compared PATE
analysis. If the estimation is correct, the GP-GAN would perform worse than PATE when
run at the same privacy level. In another work [106] Zhang et al. introduce FedDPGAN, a
DP-GAN which integrates into the FL framework. The scenario describes a DP-GAN that is
collaboratively trained using FL, with the resulting model creating private training images for
a ResNet-based student model. The approach achieved a performance of 94.5% on a COVID-
19 detection task and even outperformed the non-private ResNet model by 1.5%. However,
the study does not provide the accumulated privacy budget and only states the used noise
scale.
Concluding this literature summary, the studies of PPML in X-ray classification are sparse.

The most common method of DP-SGD is also the method that has not been evaluated on
the COVID-19 task—at least not in a central setting. The few existing works on COVID-
19 X-rays primarily focus on exploring the possibilities of one method and solely reference
other publications in their evaluations. Such referencing is a standard research methodology;
however, accurate comparability requires a benchmark dataset with a pre-defined test set
to enable consistent results. Another problem spanning almost all presented work is the
inconsistency in privacy budgets. Approaches are compared on different privacy budgets,
yielding no valid comparison, while some evaluations even completely omit this information.
This work thus enriches the field of PPML in X-ray classification tasks by comparing

multiple approaches in the same environment. All runs use the same dataset and adhere
to the same privacy budgets. The evaluation focuses on the COVID-19 detection task, with
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many privacy experiments even seeing their first evaluation on an X-ray task5. A commonality
for all PPML methods surveyed in this section is their MNIST task evaluation. Thus, some
models could be run on the MNIST dataset to investigate the differences to the COVID-
19 task. Finally, this section showed that PPML on the COVID-19 task could result in an
accuracy loss of 20.0-23.7% when keeping a reasonably low privacy budget. Other works with
better privacy-accuracy trade-offs are either not private enough or do not state their final
privacy budget. The same PPML methods only lose 1.2-4.0% on the MNIST set while keeping
lower privacy budgets.

3.3. Repelling Membership Inference Attacks

The theoretical bound given by the privacy budget ε is the standard identifier for privacy in
DP. These values give insights into the level of privacy a model guarantees. Still, to evaluate
the real-life implications of these theoretical metrics, an empirical analysis of a private model’s
defense can be achieved by simulating attacks.
Regarding MIA defense, the expectations are that guarantees of DP limit the success

of membership inference [75, 76]. Rahman et al. [48] tested this hypothesis by evaluating
MIAs on different privacy budgets. Their non-private model found the MIA to correctly infer
membership in over 60% of cases. At ε = 8 the success remains at 60% of samples, while
at ε = 4 they still inferred 58.7%. The bigger gaps were located at ε = 2, with 53.3%, and
ε = 1 with 50.7%. When considering that 50% would be the optimum, ε = 1 resulted in a
strong defense against MIAs. In their paper, Rahman et al. explained the success of lower
budgets against MIAs with the fact that models trained at lower ε guarantees exhibited less
overfitting—overfitting being one of the primary culprits behind the success of MIAs as found
in [75] by Shokri et al.
In addition to discovering the connection between overfitting and MIAs, Shokri et al. [75]

state that the structure and type of the model contribute to the problem. Salem et al. [83]
go further and demonstrate that even the training process can help with repelling MIAs. In
their experiments, model stacking in the form of ensemble training, as seen in PATE, could
reduce memorization in the final student model. When building a comprehensive study, [80]
proved that overfitting in ML models is sufficient to enable MIAs. At the same time, a
formal analysis showed that overfitting is no necessary criterion, and stable models can hold
membership vulnerability. However dangerous MIAs may be, there are cases in which no
protection though DP is needed to mitigate their effectiveness. This observation by Triastcyn
and Boi [61] appeared when they wanted to evaluate the defense of their model. They found
that the MIAs resulted in nearly random guessing accuracy even without protection.
Another strategy presented by Shokri et al. [75] showed that limiting the model outputs

to only return class labels instead of confidence values was an effective and straightforward
defense mechanism against MIAs. In a medical task like COVID-19 detection, where the
use case is to help medical professionals in diagnosing an illness, the confidence value is an
integral part of the output, indicating how certain the patient is affected. Thus, the remedy
of rounding or omitting confidence values cannot be applied here.

5For an overview of the experiments see Chapter 4 Section 4.9.
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Many relevant publications on PPML methods usually see no inclusion of actual attacks as
an empirical metric [41, 52, 53]. Instead, the evaluation focuses on performance and accepts
the theoretical privacy bounds set by ε. This notion is problematic because the stated privacy
guarantees are difficult to assess regarding their actual defense against attacks. Although
existing studies investigate MIAs relative to stated theoretical privacy budgets, a factor in
MIAs could be the specific PPML implemented in the experiments. Further, the threat of
MIAs might depend on the used dataset and its related task. For the first time, this work
studies the relationship between DP and MIAs on a COVID-19 X-ray detection task—and
probably on X-ray detection in general. Multiple PPML methods and architectures, with
different experiments regarding architectural changes, are evaluated concerning MIAs.
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The following sections constitute an overview of the whole experimental setup, implementing
the needed processes and drawing conclusions on which experiments to run. Section 4.1 begins
to unravel the problem of privacy-preserving detection of COVID-19 in X-ray images from
an implementational and experimental point of view. The explanations include approaching
the task by dividing it into sub-steps and the scientific manner of examining the resulting
solutions. Section 4.2 continues by giving the software and hardware environment used to
develop and run the whole system. Section 4.3 opens the explanations of the ML process
by exploring the topic of data. Talking about data involves going over all relevant datasets
and detailing the needed preparation steps before training on them. Section 4.4 then talks
about the implementation of the non-private training procedure, which constitutes the first
working prototype for COVID-19 classification. With Section 4.5 the goal then is to decide on
suitable PPML methods to run in the experiments. Implementing the private ML workflow
takes the non-private prototype as a starting point and adds the needed procedures to ensure
DP for the trained model. To test the effectiveness of the privacy preservation, Section 4.6
talks about the MIAs directed against the model. Considering different MIAs, the goal is
to find the strategy that results in the most considerable information leak from an attacked
model. There are numerous possible model architectures to choose from when training image
classifiers, with differences in layer count or type affecting the resulting model. This variety
of options evokes the considerations in Section 4.7 for selecting the architectures for the
experiments and eventual options for pre-training. Section 4.8 plays a central role because
it goes over the actual settings and implementations used in the experiments. The section
gives the hyperparameters for training each model and incorporates the PPML methods into
the general ML process. In the final Section 4.9, an overview of all planned experiments
concludes this chapter. It outlines the reasons for each experiment and lays out the proposed
implementational and architectural changes.

4.1. Problem Statement

The privacy-preserving detection of COVID-19 in X-ray images consists of two principal
problems. First, the ML task of training an image classifier for X-ray images to decide between
COVID-19 positive patients and patients without findings (Normal). The second part includes
introducing PPML methods to ensure DP and support the defense against attacks on the
resulting private model. This defense should repel the attacks or render the leaked data
useless. While solving both problems of classification and privacy achieves the general goal,
the solely theoretical analysis in the form of DP limits the insights on the actual privacy
level of the models. This work aims to secure the models against MIAs to prevent attackers
from revealing individuals from the dataset. Thus, a third issue related to this work is the
evaluation of real MIAs on the resulting classification models, which tests the hypothesis that
DP helps in protecting against such attacks. Especially when working on medical tasks, an
ML model is required to provide accurate diagnostics and strong privacy guarantees to give
potentially helpful insights to medical professionals without compromising patient privacy.
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Therefore, a key ambition is to reduce the possible gap in classification accuracy between non-
private and private models that is effectually rooted in the accuracy-privacy trade-off present
in PPML. The trade-off is that models with better privacy guarantees give less accurate
results due to the introduced noise needed for DP.
Same as the problem statement itself, the implementation splits into solving separate build-

ing blocks stacked on top of each other to solve the overall problem. These subtasks consist
of first developing a non-private COVID-19 classification, then adding privacy-preservation
to attain private models, and finally attacking the models to test their privacy promises.
Non-privately detecting COVID-19 in X-ray images can be broken down into a standard im-
age classification task and solved using common ML strategies. Data generally constitutes a
fundamental factor in achieving good ML results, making accumulating a COVID-19 dataset
and its preparation for training an inevitable step. Using this dataset as a basis, construct-
ing a non-private prototype allows testing different settings and hypotheses right from the
start. The prototype should feature a working implementation of the complete ML process
from loading the input data to achieving the training of a classifier. A functional prototype
enables running tests on different training parameters and model architectures to find the
best basic setup for the experiments. The next milestone is to build onto this non-private
setup and integrate different PPML methods to reach private models. Again, arriving at this
stage allows evaluating different settings for the algorithms. Including distinct candidates
when selecting the PPML methods is essential to examine their differing influences. The final
implementation work preparing the experiments focuses on MIAs. MIAs are a crucial part of
the experimental evaluation and ask for some considerations to find the best strategy. While
a basic attack might take the confidence values a model returns for the given image and
solely decide based on a threshold, a more sophisticated approach would train attack models
on the results of many image samples to better recognize differences in the target model’s
predictions.
All proposed approaches are systematically analyzed through experiments to obtain the

best results. Instead of focusing on hyperparameter tuning in the actual experiments, such
tests run on the non-private and private prototypes. In contrast, the experiments aim to eval-
uate more fundamental architectural changes to find the best performing and most secure
models for non-private classification and each PPML method. The relevant metrics assess
classification performance and privacy in different models, with the privacy aspect centered
around MIAs. As a premier step, experiments for the non-private setting explore the best
models to form a non-private baseline. In this case, the evaluation focuses more on perfor-
mance than privacy. The baseline forms an anchoring point to compare the private results
and determine the existing accuracy-privacy trade-offs. The evaluation of the private models
evenly considers accuracy and privacy. The best contenders join the final evaluation that con-
trasts the PPML methods and non-private baseline. After only concluding the non-private
and the different PPML approaches on their own, the final evaluation intends to give a com-
prehensive overview. The supplementary evaluation of some models on another dataset than
the COVID-19 task validates and qualifies the gained insights. Running the same experiments
in such a distinct setting tests their correctness and reveals differences to the original dataset.
A final discussion of the evaluation then concludes by summarizing all findings.
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4.2. Software and Hardware Environment

This section goes over the environment where all experiments are implemented and run. This
documentation enables the results to be reproducible and traceable.
Regarding software, the environment relies on open-source tools to stay accessible. Thus,

all implementations use open-source frameworks and libraries. This notion also advocates
the use of publicly available datasets. The general programming language is Python, with
ML workflows implemented mainly using the Keras [107] DL API, which runs on top of
Google’s Tensorflow6 [108] framework. Further, private models employ features from the
Tensorflow Privacy7 library. In terms of software settings, most libraries in Python allow the
specification of a fixed random seed, making it possible to draw the same random values
every time. Keeping the same random seeds is particularly important to enable consistency
and reproducibility since randomness is one of the key concepts in PPML. Therefore, any
random seeds have a value of 42.
The corresponding code to this work is publicly available as Jupyter notebooks in a GitHub

repository8. A Jupyter notebook is a web application that allows creating and sharing doc-
uments containing live code, coupled with equations, visualizations, and narrative text—all
in a single file.
The hardware configuration is fundamental because it influences run times and enforces

memory constraints, leading restrictions on ML settings like epochs, batch sizes, or even
architectures. In this case, the Jupyter notebooks run on the Google Colab9 platform. Google
Colab offers to remotely run notebooks on their hardware infrastructure and provides capable
computing resources, including GPUs. All runs are executed with a Google Colab Pro account
using an NVIDIA Tesla P100 PCIe GPU and a high-memory environment of 25 GB.

4.3. Data

This section first delivers details on the four datasets relevant to this work. A final part then
focuses on the data preparation steps each dataset receives before model training.

4.3.1. COVID-19 Radiography Database

The COVID-19 Radiography Database [90, 91] on Kaggle10 is the most comprehensive collec-
tion of COVID-19 chest X-Ray images, stemming from different databases around the web.
It was created by a team of researchers from Qatar University and the University of Dhaka
and their collaborators from Pakistan and Malaysia in a joint effort with medical doctors.
Next to COVID-19, it contains images for Normal and Pneumonia cases, with an example
of each class presented in Figure 4.1. In total, this image collection offers chest X-rays of
3,616 COVID-19 positive, 10,192 Normal, and 7,357 Pneumonia cases—on the date of the
experiments. Being the main dataset for the use case of differentiating COVID-19 vs. Normal,

6Available on GitHub: https://github.com/tensorflow/tensorflow
7Available on GitHub: https://github.com/tensorflow/privacy
8Available on GitHub: https://github.com/luckyos-code/DP-X-COVID
9Available at: https://colab.research.google.com

10See: https://www.kaggle.com/tawsifurrahman/covid19-radiography-database
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Figure 4.1.: Sample images from the COVID-19 Radiography Database: COVID-19 X-ray image (A),
Normal X-ray image (B), and Viral Pneumonia X-ray image (C). Figure from Chowdhury
et al. in [90].

only these two categories remain while omitting Pneumonia samples. Now, to directly miti-
gate some of the clear imbalances, the final dataset construction takes all COVID-19 scans
but just 1.5 times the amount for Normal (5,424). The resulting 9,040 images are in PNG
file format with a resolution of 299x299 pixels. The COVID-19 Radiography Database is the
main dataset regarding the topic of this work.

4.3.2. Chest X-Ray Images (Pneumonia)

The Chest X-Ray Images (Pneumonia) [109] database is another Kaggle dataset11 containing
Normal and Pneumonia images. It has 5,856 X-Ray images in JPEG file format, divided
into the two categories as 1,583 Normal and 4,273 Pneumonia samples. Again, to reduce
the imbalance, the final dataset takes all Normal scans but just 1.5 times the amount for
Pneumonia (2,374). This set can form a non-private dataset for a closely related transfer
learning approach since it also poses an X-ray image classification task [41].

4.3.3. ImageNet

Figure 4.2.: Sample images from the ImageNet database with their labels. The graphic shows how
sub-classes cover the many different images from general (mammal) to specific (husky).
Originally seen in [110].

The ImageNet [110] is one of the most famous image database to date. With over 14 million
hand-annotated images containing 20,000 categories, this massive project has significantly
influenced computer vision research and helped discover the superiority of using DL with
CNNs in image classification [18]. The content of the unequally sized images covers classes
from general (mammal) to specific (husky), as exemplified in Figure 4.2. Other tasks can

11See: https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
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benefit from using this massive collection for pre-training, introducing many differentiating
concepts to a neural network before training on the target data [111].

4.3.4. MNIST Database

A different topic is covered by the MNIST Database from LeCun et al. [17], which offers an
extensive data collection of handwritten digits. In detail, these are images of the digits from 0
to 9 against a black background, as shown in Figure 4.3. The database provides 60,000 images
for training and 10,000 for testing. In contrast to the other data sets, this classification task
gives fewer details using tiny gray-scale images with a 28x28 pixels resolution. The MNIST
dataset is a commonly used benchmark in image classification, especially in PPML, making
it a perfect candidate for comparing results, e.g. [41, 52, 53, 85, 112, 113, 114]. The relatively
short learning process stems from the less complex image data when compared to the other
datasets.

Figure 4.3.: Sample images from the MNIST database with their labels. The handwritten digits range
from 0-9 and are given as gray-scale images against a black background.

4.3.5. Data Preparation

This work skips the step of gathering data by using existing data sets, but still, there are some
essential options to make training more efficient. Data preparation is a fundamental stage
of data analysis and ML, which can have a critical impact on achieved performance [115].
First, the data is split into training and test sets, where not already done. Hence, both X-ray
datasets use a train-validation-test split of 80-5-15, i.e., 80% of images form the training set,
5% the validation set, and 15% the test set. Such partitions allow training, validating, and
testing the model on distinct sets. The addition of a validation set can help in spotting and
reducing overfitting on the training data [116]. Overfitting is one of the main caveats on
smaller datasets like the X-ray datasets since there are fewer images for learning [87]. After
constructing and splitting the dataset, the images need preparation for actual use with the
ML model. Further, the data undergoes the standard image preprocessing steps of resizing
the images to the desired size and normalizing inputs by scaling each image representation
with a factor of 1/255. The MNIST images keep their 28x28 image size, while the other three
datasets treat their images as 224x224 pixels. All datasets are taken with three color channels,
where translating the MNIST greyscale images to the RGB space is vital to allow the models
pre-trained on color images to still work with the input data. On another note, to not see the
same order of training samples each epoch, the training set gets shuffled before handing it to
the ML algorithm.
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An essential tool to combat overfitting is data augmentation [117]. An image is subjected
to small random changes, creating new images to artificially enlarge the dataset. It also helps
with simulating more realistic conditions. The augmentations are solely applied to the training
set because validation and testing must use consistent original data. While augmenting each
image, the overall dataset size stays constant. Thus, each training set image gets randomly
altered to be slightly different in every epoch, but the number of images presented to the
model in each epoch rests the same. The applied random mechanisms and parameters are
horizontal flip, rotation of 10%, translation of 10%, zoom of 15%, and brightness of 10%. The
augmentation chooses a random value in the given limits. The settings are summarized in
the following code snippet:

1 data_augmentation = Sequential([
2 RandomFlip(’horizontal’),
3 RandomRotation(0.1, fill_mode=’constant’),
4 RandomTranslation(0.1, 0.1, fill_mode=’constant’),
5 RandomZoom(0.15, fill_mode=’constant’),
6 RandomBrightness(0.1)])

Random brightness alteration is particularly interesting for the use with X-ray scans. These
settings can improve classifier performance while not altering the images too much. The slice
from an augmented training batch of X-ray images in Figure 4.4 shows a possible outcome.
Augmentations only apply to the X-ray datasets, not the ImageNet or MNIST databases.

Figure 4.4.: Sample augmented images from a training batch with their labels. The applied random
mechanisms and parameters are horizontal flip, rotation of 10%, translation of 10%, zoom
of 15%, and brightness of 10%. The augmentation chooses a random value in the given
limits.

An earlier problem stemming from the X-ray datasets’ construction is the imbalance re-
garding sickness (COVID-19, Pneumonia) and Normal class frequencies. On the example of
the COVID-19 set, Figure 4.5 displays the distribution of labels in the training, evaluation,
and test sets. In total, the train, validation, and test sets contain 7,232, 452, and 1,356 sam-
ples, respectively. As stated in Section 4.3.1, all sets contain roughly 1.5 times the Normal
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Figure 4.5.: Distribution of labels over training, validation, and test set for the COVID-19 data. In
total, the train, validation, and test sets contain 7,232, 452, and 1,356 samples, respec-
tively. X-rays of the Normal class amount to roughly 1.5 times the number of COVID-19
scans in each set.

images compared to COVID-19. Consequently, the model could favor the Normal cases while
training, treating COVID-19 as a minority. Class weights can help artificially restore the
balance in classifier training [118]. They are factored into the model’s cost function on a per
example basis to strengthen or weaken their specific influence on the learning process. When
calculating the weights for each class, class frequencies are taken and translated into factors
that equalize each class’s impact. This process yields a class weight of 0.83 for the Normal
and 1.25 for the COVID-19 class. These factors penalize the model when it classifies a sam-
ple as Normal, evening out biased classifications arising from the imbalanced data source.
The corresponding class weights for classifying Pneumonia vs. Normal are 0.83 and 1.25,
respectively, since Pneumonia contributes 1.5 times the Normal cases, see Section 4.3.2.

4.4. Non-Private Baseline

After preparing the data, the following steps are directed towards creating a non-private pro-
totype to solve the classification task. The prototype forms the basis for the later inclusion of
PPML methods. Implementing a working version of the ML process is a crucial first stepping
stone. The ML process starts with successfully loading the data, continues with building a
non-private model architecture, and ends with the successful training of a COVID-19 classi-
fier. The Keras software library for Python is used in conjunction with the related Tensorflow
ML framework to realize the ML pipeline. The general ML strategy employs DL with CNNs to
realize the image classification. The actual architecture of the neural networks is irrelevant to
the modular training process and can change for each experiment. A working modular proto-
type supports a first training and fast evaluation of different models, which is key to handling
the fundamental problems of an ML task like hyperparameter tuning. Since the experiments
in this work mainly aim at PPML and surveying changes in existing architectures, the ba-
sic ML settings are instead already tested on the prototype, decoupling the hyperparameter
tuning from the actual experiments. The testing involves different batch sizes, learning rates,
and epochs. The same deliberative process later exposes the best general settings for private
training. The resulting training parameters and details are given in Section 4.8. The tests
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on the non-private prototype also involve matching different model architectures to decide
which ones to include in the experiments, with the results shown in Section 4.7.
Even though a leading aspect of this work is privacy preservation, the optimization of

non-private training delivers essential insights. For one, it is vital to identify whether the
task is already too hard without using PPML because not being able to build a feasible non-
private model would make reaching the goal of successfully creating a private classifier highly
unlikely. Further, some findings from the non-private experiments might also carry over their
improvements to the private domain. In the end, one of the principal intentions of running
the non-private experiments is to find the best models to compare to the private variants. The
best non-private models constitute the non-private baseline, which is the best performance
without PPML and is needed to determine the accuracy-privacy trade-off incurred from the
private procedures. It also shows how experimental outcomes differ when applying them in
different settings. In the non-private setting, the focus in selecting the best model is on the
accuracy of classification rather than privacy metrics because models are trained without DP.
Still, the most secure model also joins the final comparison to the private versions.

4.5. Discussing Privacy Preserving Algorithms

There are multiple ways of securing ML with DP, with some being general solutions, while
others specialize in solving or correcting a specific problem. Therefore, an important step is
picking the proper techniques for the given problem. Instead of running experiments with
each PPML algorithm, the evaluation focuses on only a few, allowing more experiments per
method. This section aims to find suitable competitors by navigating the advantages and
disadvantages of each method and explaining why they are selected or rejected.
In a first step, algorithms solely resulting in private prediction are evicted as they do not

allow secure model publishing. In addition, when applying privacy in the ML process, an
empirical study by van der Maaten and Awni Hannun [45] revealed that even with private
training (DP-SGD) reducing accuracy, aiming for private prediction (sample and aggregate)
can perform worse in CNNs. This decision means methods like sample and aggregate are not
considered. Thus, one relevant strategy (a) providing the appropriate security is privatizing
the whole dataset or its labels before training the actual model. The other method (b) is
applying DP through integration into the model’s training process. These two options mainly
leave DP-SGD(a), PATE(b), DP-GANs(b), and FL(a) as possible algorithms.
The simplicity of directly adding DP to the learning process by changing the optimizer to

use noisy gradients makes DP-SGD easy to implement and enables its use in a wide range
of ML tasks. The biggest drawback of DP-SGD is its induced accuracy loss. Nevertheless,
different experiments promise to lower this gap with simple adjustments to model architec-
tures, see 4.9. In general, DP-SGD is one of the most used PPML methods, but in the X-ray
classification task, it is more commonly considered in an FL setting [71, 104]. The only sam-
ple in literature was run on pneumonia data reaching a private performance of 79% [102].
Including it here would yield a centrally trained candidate for comparison. Considering the
importance of the DP-SGD algorithm in PPML research, it can be seen as a must-have for
the evaluation.
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Another common strategy for applying DP is PATE, which takes a different approach
to private training than DP-SGD. Through decoupling the teacher ensemble and student
model, PATE offers a framework that focuses on keeping the original labels of the training
set private. By creating a student set labeled using noisy predictions from the teachers,
the training process of each model itself rests untouched while still guaranteeing DP [52].
However, the noisy aggregation process is also PATE’s main hindrance because reaching
accurate labels needs a high enough teacher number to counter the introduced noise level on
the labels. Another drawback of PATE on small private datasets is the need for training data
reserved for the student. The data labeled by the ensemble must be unseen, which means it
has to be set aside beforehand, leaving even fewer training samples for the teachers. On the
COVID-19 task, related work achieved an accuracy of 71% at ε ≈ 6 [103]. The completely
different solution to private training makes PATE a logical contender for DP-SGD.
The main advantage of using DP-GANs is creating a DP-conform dataset of synthetic

images with the same statistical properties. The post-processing immunity of DP then allows
the training of non-private classification models on the data while still keeping DP [42].
Because a GAN can generate new images, one can artificially enlarge the dataset over the
original level, which is highly relevant on small datasets like the X-ray databases. Still, a
synthetic dataset does not mean that an MIA does not reveal original data. MIAs mainly
attack the confidence values of the model and in this case, not necessarily the actual training
images used. When building a synthetic dataset that is a statistical clone to the original, the
resulting ML model trained on this data could be roughly equivalent to the one trained on
the original data. The predictions could therefore still exhibit the same threatening notions
exploited by MIAs. So, there might be no additional defense gained from creating new data
with a DP-GAN other than the DP property itself. Therefore, DP-GANs would only be
better than other PPML methods if the application of DP was more effective than in other
algorithms. The achievement of DP in DP-GANs is commonly due to the use of DP-SGD
during training [59, 60]. Using PATE is also possible, as seen in the PATE-GAN [119]. In
general, training a DP-GAN rather than directly using a CNN architecture with DP-SGD
or PATE has significant drawbacks. First, in most cases, a GAN’s synthesizing task is a
challenging ML task, resulting in a non-perfect replica of the original dataset [54, 55]. The
application of DP then further reduces the abilities of the GAN because of the accuracy-
privacy trade-off from the introduced noise [59, 60]. Consequently, training a classification
model like a CNN on the generated data can ultimately result in worse accuracy than using
the original data. Derived from this penalty, since PPML methods can be applied directly
to a CNN and give the same privacy level without the additional performance hit from
GAN training, the DP-GAN algorithm is less effective than direct usage of DP-SGD or
PATE. Relying on DP-GANs might also lead to security issues as Liu et al. [120] explain,
that “it is possible to hide [] sensitive identification data in the sanitized output images of
such [D]P-GANs for later extraction, which can even allow for reconstruction of the entire
input images, while satisfying privacy checks.” These findings seem to apply to untrusted
third-party tools only but negatively affect the general confidence in using DP-GANs. Still,
tuning and investigating DP-GANs on X-ray images would harvest numerous experiments and
possible insights. A recent publication employing DP-GAN in conjunction with FL achieved
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a performance of 94.5% but did not give a privacy budget and instead only stated the used
noise scale [106]. In conclusion, the listed disadvantages favor the direct usage of the other
PPML algorithm for the given goal.
FL with DP seems like the perfect solution to the problem of medical data sharing. Each

hospital can keep its data locally while securely sharing the gradients to train the overall
model. Compared to central training, the resulting model experiences some accuracy loss but
might gain access to more data [121]. While others employ forms of FL when using medical
images, e.g. [98], the main difference to this work is that they rarely apply DP and instead
aim for non-private models. Hence, FL here needs to include some form of PPML in the
training procedure, which is most commonly the DP-SGD algorithm, but PATE could be a
substitute [121]. Like DP-GANs, this results in the central and direct application of these
PPML methods being the upper bound in performance because FL introduces additional loss
through the decentralized learning scheme [70]. With DP-SGD inside the FL framework [71]
achieved a private model with 73.8% but at a mere privacy guarantee of ε = 39.4. In con-
clusion, the framework of FL offers supporting features for this task. However, since the
underlying algorithms to tune would be DP-SGD or PATE, their direct inclusion in a central
setting is the better option for the evaluation. Also, FL is more of a general ML framework
and works (for the most part) independently from the training parameters, still enabling its
application to the findings of this work.
The overview of the relevant PPML methods concludes with DP-SGD and PATE as justi-

fied options. By only examining two PPML algorithms, the experiments can favor a focused
and more profound research over the possibility of gaining a broader but shallow analysis. It
further allows studying the differences between the application of noise to gradients vs. labels
in this task. The evaluation then contrasts the two against the non-private baseline. Since
DP-GANs and FL can utilize either method for their private training, the direct comparison
of DP-SGD to PATE also gives a more fundamental benchmark that can still be useful later.
The implementations of DP-SGD and PATE take the non-private prototype from Sec-

tion 4.5 and change the training process at the appropriate points to guarantee DP. Elabora-
tions on the concrete settings and operations for both algorithms are located in Section 4.8.

4.6. Attacking the Classification Models

Before detailing the used MIAs, this section first answers why MIAs are the most threatening
attacks to exploit models trained on the COVID-19 detection task. While there are many
possible attacks, the relevant other threats to published models are reconstruction attacks
and model inversion attacks [4]. Limiting the access to published models to black-box access
naturally repels reconstruction attacks because they need white-box access to the inner model
parameters to reconstruct the original data. In contrast, model inversion uses the confidence
values returned by the target model’s predictions and thus utilizes the same information as
MIAs. Unlike MIAs, model inversion tries to mimic an input that returns the highest possible
confidence value for a given class. For example, if a face recognition ML task differentiates
between Harry, Hermione, and Ron in images of their faces, and the goal is to retrieve an
image of Ron, the attacker would try to construct an image that is confidently classified as Ron
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by the target model. The higher the achieved confidence value for the constructed image, the
more it looks like the actual target. Eventually, the attacker might retrieve an accurate image
of Ron. However, model inversion mostly poses threats to models that classify individuals in
their classes. In COVID-19 detection, the only two classifications for a chest X-ray are Normal
and COVID-19. When using model inversion to reconstruct an image for the COVID-19 class,
the result would be an average COVID-19 image since the model trains on images of different
individuals for the same class. Hence, a model inversion Attack would not be able to expose
a specific image from the dataset, i.e., an individual, whereas an MIA threatens to achieve
exactly that [75].
The decisive prerequisite for performing a successful MIA is some form of existing prior

knowledge of the target data [75]. MIAs use the target model to predict given sample images
and exploit the returned confidence values to determine which image was part of the original
training data. A high confidence value indicates that the model has already seen the image in
its training. An MIA reveals that an individual sample was a member of the original dataset
based on this assumption. The prerequisite of prior knowledge means that the MIA can only
test the membership of samples available to the attacker. So, the attacker needs to possess
the individual sample to uncover its use in the target model’s training. There are possible
ways of synthesizing data for the attack, e.g., using model inversion attacks, but, as seen in
the last paragraph, that would not allow revealing a selected individual.
With a perfect defense, MIAs can not distinguish between new samples and samples the

model has already seen. One common strategy to counter MIAs is by avoiding exact confidence
values through rounding or omitting them, only returning class labels [75]. In a medical task
like COVID-19 detection, where the use case is to help medical professionals in diagnosing
an illness, the confidence value is an integral part of the output, indicating how likely the
patient is affected. Thus, the remedy of rounding or omitting confidence values cannot be
applied here. The defense mechanism tested in this work is DP. The fundamental works [75]
and [76] state that DP limits the success of MIAs by definition. Jayaraman and Evans [122]
give the corresponding thought process: “[DP], by definition, aims to obfuscate the presence
or absence of a record in the data set. On the other hand, [MIAs] aim to identify the presence
or absence of a record in the data set. Thus, intuitively these two notions counteract each
other.”
The MIA implementation uses the Tensorflow Privacy library, which offers an MIA module

and the capabilities to use different attack models. Two possible variants are threshold-based
attacks and attacks using logistic regression. A threshold-based attack takes the returned
confidence scores when predicting on a sample and decides about its membership based on
a set boundary value that constitutes the threshold—a method based on [82]. When using
ML in the form of logistic regression to carry out MIAs, the resulting attack model learns
to predict the membership of a sample based on the target model’s outputs on them. The
utilized MIAs based on ML do not use the shadow models proposed by [75] (see Chapter 2
Section 2.3.2.4) since Salem et al. [83] found that using the original model’s predictions on
the samples is sufficient to deduce their membership. Thus, no approximation of the original
model is required. In general, when provided with the needed knowledge, ML is expected to
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be slightly better than threshold-based attacks in MIAs, making logistic regression the choice
for the experiments [80].
The performed MIAs access two kinds of data from the target model: (i) original training

data and (ii) data not seen in training but comparable to the original. The first kind is satisfied
by taking the original training set, and the second by taking the original test set. The attacker
gets access to the full original training set to emulate the worst-case scenario. Attacking with
the Tensorflow Privacy library can try different data slices in an attack. Other than the entire
dataset, the MIA tries slicing by class and by classification correctness to achieve the best
possible attack. In addition to training and test data, the attacker also knows the correct
label corresponding to each sample to evaluate the attacks results. The last relevant inputs
for the MIA are the model’s predictions and losses on all given samples. In summary, the MIA
implementation utilizes the labels, losses, and predictions for all training and test samples to
find and evaluate the best attack pattern.
Since individual MIA results are subject to greater variability, they need to be experi-

mentally stabilized to see a statistical significance. Stabilization is achieved by running 100
attacks and calculating the corresponding 95% Confidence Interval (CI). O’Brien and Yi [123]
define how to interpret such values:

A 95% [CI] of the mean is a range with an upper and lower number calculated
from a sample. Because the true population mean is unknown, this range describes
possible values that the mean could be. If multiple samples were drawn from the
same population and a 95% CI calculated for each sample, we would expect the
population mean to be found within 95% of these CIs.

4.7. Selecting Model Architectures and Pre-training

Non-private and private classification perform differently depending on the underlying model
architecture [124, 125]. Performance is greatly dependent on model size, i.e., the number of
layers or parameters in a model, with non-private training typically benefiting from using
bigger models. In contrast, using DP-SGD, the same bigger models can suffer from higher ac-
curacy loss than their shallow counterparts. This difference in behavior between non-private
and private training when increasing parameter counts for the model architecture is depicted
in Figure 4.6. In both case studies, the non-private setting using SGD keeps gaining accuracy
with higher parameter counts (equivalent to higher number of filters k) while the DP-SGD
model’s accuracy quickly declines after reaching an early maximum. As a result, the ex-
periments use multiple architectures with different sizes to find the best-suited candidate.
Further experimentation then tests other architectural variations and settings on the basic
architectures. The experiments are discussed in Section 4.9, while this section presents the
basic models chosen and evaluates possible pre-training options for them.

ResNets. The model family of Residual Networks, or ResNets, is one of the best scaling
deep CNN architectures thanks to its residual connections [126]. They exist in different sizes,
where the number in the name discloses how many layers the network contains. The ResNet50
version boasting 50 layers is already a stretched compromise between size and computing

36
Lucas Lange

3737104



4.7. Selecting Model Architectures and Pre-training

Figure 4.6.: Test accuracy as a function of the number of filters k (equivalent to changing parameter
count) when training with vanilla SGD and DP-SGD. Each point corresponds to multiple
training runs on MNIST (left) or FashionMNIST (right). For both datasets, adding filters
always improves non-private learning, whereas after an early point they are not beneficial
to learning with privacy. Originally published by Papernot et al. in [125].

needs because it can push the available computing capacities for this work to their limits.
The high resource needs also stem from the resolution of the X-ray image data, which results
in a resource-hungry training process. The ResNet18 is a smaller ResNet version that is more
affordable in computing needs. Except for the lower count of layers, it is identical to its bigger
brother.

Shallow network. The third tested architecture is specifically relevant for the DP-SGD
algorithm. The theory behind this approach is inspired by the discovery of Bassily et al.
in [124] that shallower Networks (containing fewer layers) can perform better than their deeper
counterparts when using optimization algorithms like DP-SGD. Papernot et al. proposed one
such successful shallow network structure in [112], where they designed it for the MNIST
database. Table 4.1 describes the adapted version for this work, where layers use the ReLU
activation function when applicable. This smaller model might disappoint when used in non-
private classification but could shine in the DP-SGD setting.

Table 4.1.: Shallow network architecture for DP-SGD, which is inspired by the work of Papernot et
al. in [112]. The output layer depends on the given task and in the shown configuration
enables binary classification into 2 categories. Layers use the ReLU activation function
when applicable.

Layer Parameters

Convolution 16 filters of 8x8, strides 2
Max-Pooling 2x2
Convolution 32 filters of 4x4, strides 2
Max-Pooling 2x2

Fully connected 32 units
Sigmoid 1 unit

Other networks. The use of deeper architectures than the ResNet50 would be even more
taxing on memory and probably exceed the hardware limits. However, there are models like
the EfficientNetB4 [127], which has fewer parameters than the ResNet50, while achieving bet-
ter performance on the ImageNet task through new model scaling techniques. The DarkCovid-
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Net [1] on the other hand, is a smaller but specialized network for COVID-19 classification,
making it particularly interesting in this task. Models were run on the non-private prototype
setup to test all contenders’ abilities. In this implementation, the ResNet18, ResNet50, and
EfficientNetB4 use weights pre-trained on the ImageNet dataset provided by the Keras API.
The results pointed out in Table 4.2 show the five architecture candidates with their respec-
tive model size in the form of total parameters and their accuracy on the COVID-19 task.
The EfficientNetB4 reaches 95.7%, landing behind the ResNet50 by 2.1%, which performs
best at 97.6%. The smaller ResNet18 follows closely at 94.0%, just slightly outperforming the
ten times smaller DarkCovidNet that situates itself at 91.9%. The shallow network performs
worst with only 79.3%, suggesting that the model size might not be enough for the non-private
setting. This small-scale study shows higher accuracy results with increasing parameters. Be-
cause the EfficientNetB4 could not beat the ResNet50, both ResNets stay in the experiments.
Their structure only differing in layer count allows for a better investigation of the influence of
architecture deepness on the final results. There is no benefit from additionally including the
DarkCovidNet based on raw performance. Taking it for its size seems unnecessary, consider-
ing the ResNets are the best candidates to spot any isolated influence of size on performance.
The extensive research and literature on ResNets also provide better comparability, which
is shown by ResNets being the CNN architecture with the most published papers12 when
querying Papers With Code, a website that collects the latest state-of-the-art ML papers
and code [128]. In terms of specialized models for private training like the shallow network
for DP-SGD, no other significant architectural development was found to directly improve
the expected outcome for the PPML methods. The final selection of architectures for the
experiments includes the ResNet50, ResNet18, and shallow network.

Table 4.2.: Comparison of possible model architecture candidates matched by their accuracy reached
when running them in a prototypical non-private implementation of the COVID-19 clas-
sification. The parameters column refers to the total count of parameters of a model as a
metric for model size. ResNet18, ResNet50, and EfficientNetB4 use weights pre-trained on
the ImageNet dataset.

Model Parameters Acc.

Shallow network 0.18M 79.3%
DarkCovidNet 1.17M 91.9%

ResNet18 11.19M 94.0%
EfficientNetB4 17.68M 95.7%

ResNet50 23.55M 97.6%

Pre-training. Pre-training can give each of the chosen models a possible head start [24].
An important factor here is that the datasets used for pre-training can be public while the
actual dataset of the target task has to stay private. A common way of pre-training in CNNs
is to simply use the extensive ImageNet [110] collection and let the model train on it, hoping
that it can gain useful general insights for working with images [111]. A more refined approach
takes a closely related task to instill knowledge more relevant to the target task [41]. In this
case, the perfect candidate is the task of detecting pneumonia in X-ray images, for which the
12With 1,387 published papers on ResNets and only 354 on the CNN in the second place on the list.
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Chest X-Ray Images (Pneumonia) [109] database delivers the needed public dataset. There
is a medical connection between the two tasks of classifying pneumonia and COVID-19 from
X-ray images since a COVID-19 infection can involve a viral pneumonia [129]. Therefore,
the features learned from the pre-training should roughly correspond to each other, making
fine-tuning for the actual task easier. To summarize, in addition to the basic version of each
architecture, experiments also consider versions pre-trained on the ImageNet and Pneumonia
databases.

4.8. Hyperparameters and Details of Model Training

This section goes over the general training settings for all architectures and methods. They
are mainly derived from tests on the prototype and take indications from related works.
Other than hyperparameters, this section includes general details for non-private and private
training, especially for DP-SGD and PATE implementations.

Epochs. If not stated otherwise, every model trains for 20 epochs, which turned out to
be the best compromise to reach a plateau in performance while at the same time limiting
training time. As a side effect, choosing a small number of iterations helps limit the privacy
loss in DP-SGD, since for DP, the privacy loss increases with the times each training image
occurs [130].

Output layer. For the main binary classification task on the X-ray images, the models
are equipped with a 1 unit fully connected layer with sigmoid activation as binary output
and take binary cross-entropy to calculate their loss.

Optimizer and learning rate. In general, all implementations use the Adam optimizer
instead of a SGD optimizer. This decision is mainly based on Adam’s adaptive properties,
enabling it to perform similar to a task-adjusted SGD [112]. This advantage makes Adam the
best overall optimizer for the many different models in the experiments. The starting learning
rate for each scenario is 1e−3, which was found to consistently deliver a high plateau at the
set number of 20 epochs. After starting on this value, the learning rate decays on plateaus,
i.e., if the loss on the validation set does not improve for two consecutive epochs, the learning
rate is reduced by a factor of 0.1. This process can bring the learning rate to a minimum of
1e−6. The decay enables finer steps in the parameter updates when getting further in the
learning process [131].

Batch size. The batch sizes differ from method to method and model to model. This
discrepancy is due to the varying memory needs, which differ by model size but are especially
tough in DP-SGD due to batch-level operations, like clipping and noising. The resulting batch
sizes for methods and models are summarized in Table 4.3.

DP-SGD. The Tensorflow Privacy library provides a DP-SGD implementation in the
form of a readily built optimizer. The DP-SGD algorithm stacks on top of the existing non-
private training by changing the optimizer and handing in the necessary DP-SGD parameters.
Although referenced as DP-SGD, the employed optimizer is the accordingly modified DP-
Adam version, which follows the same reasoning for using the non-private Adam instead of
SGD. The used learning rate rests the same as in non-private training. When selecting the
parameters for the private training, the needed noise scale varies according to the desired
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Table 4.3.: Overview of batch sizes used with different architectures and methods. The differences are
due to the varying memory needs, which differ by model size but are especially tough in
DP-SGD due to batch-level operations, like clipping and noising.

Batch size
Model Non-private DP-SGD PATE

ResNet50 32 8 32
ResNet18 32 16 32

Shallow network 32 32 32

privacy budget ε, which draws from a Gaussian noise mechanism. A clipping norm of 1.0 was
identified to maintain effective training when clipping the gradients. Lastly, the micro-batch
size on which DP-SGD operates is the same as the general batch size used in training the
model.

PATE. The needed steps for PATE are implemented by hand. The experiments utilize the
same model architecture for all teachers and the student13. The best-performing non-private
architecture should be selected since PATE exploits a standard training procedure by only
privatizing the labels through noise afterwards. Although the ResNet50 seems to perform
better than the smaller ResNet18 in the non-private settings, there might be no other choice
than to opt for the best ResNet18 version. This limitation is due to the computing resources
needed to train higher teacher numbers using the large ResNet50. At the same time, the
shallow network should not be able to top the ResNet18 in the non-private setting. Training
is run for 100 epochs for each teacher instead of 20 to better accustom them to their smaller
data share. Data handling in PATE has to be slightly different from before. The algorithm
separates 999 images from the original training set to constitute the student training data,
prepared the same way as the regular training data. The student data forms the unlabeled
public data that is then privately labeled by the teacher ensemble. The remaining training
images are split into distinct sets according to the wanted number of teachers, for which the
small dataset introduces strict limits. When using 25 and 50 teachers with the COVID-19
dataset, each split shrinks to 249 and 124 images, respectively. At the same time, the amount
of teachers is still relatively low for achieving strong privacy guarantees, since budgets of 0.1,
1, and 10 already ask for noise scales of 2,720, 278, and 33, where noise is drawn from the
Laplace noise mechanism. With only a maximum of 50 votes from the teachers, the large noise
scale can render the transferred knowledge useless. The limits regarding data and noise make
choosing less than 25 or more than 50 teachers unsustainable. With less than 25 teachers,
the noise impact would be too high, and with more than 50 teachers, the data share for each
teacher would be too small.

Pre-training. To transfer knowledge from a source task, a model has to be trained on
the relevant public dataset, preferably using the same architecture it later uses on the target
task—here the COVID-19 set. The only exception is the output layer, which is not copied
and can thus change depending on the task. When a source model finishes training on the
pre-training set, all layer weights other than the output layer are copied to the same layers in

13When taking advantage of pre-trained models, all teachers and the student are pre-trained.
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the target model. The target model then starts training on the actual target dataset using the
pre-tuned weights to fine-tune them. All model layers are unfrozen, i.e., trainable, to allow
this tuning. The pre-training on the Pneumonia dataset is done by hand using the same
settings as on the COVID-19 set, while the ImageNet variants are provided by a Python
library that extends the existing range of Keras models14.

MNIST. Running the models on the MNIST dataset and its related task requires some
modifications to the training setup. When training on the MNIST dataset, models switch to
multiclass classification to differentiate the ten digits and thus use a 10 unit fully connected
layer with softmax activation as output. This change is accompanied by the switch to the
categorical cross-entropy loss instead of the binary version. Except for the fixed batch size of
32 in all runs, the training operates under the same parameters as before.

4.9. Investigating Performance and Privacy with Experiments

A practical approach to investigating hypotheses in the form of many different models and
methods is by running experiments. Experiments deliver the empirical results needed to match
the tested candidates by metrics, evaluating the related hypotheses. This section summarizes
all experimental efforts. Figure 4.4 provides an overview of the experimental pipeline on the
COVID-19 set and illustrates how the different architectural experiments unfold from the
compared methods. Non-private, DP-SGD, and PATE training form the root from where the
tree branches out to the general architectures, followed by the specific settings in the tree’s
leaves. The diagram shows a total of 44 architectural experiments, with each path from the
root (left) to a leaf (right) representing a complete experimental setup. The different privacy
budgets and experiments on the MNIST dataset are not included in the diagram.

Datasets. The experiments are mainly run on the task-relevant COVID-19 Radiogra-
phy Database [90, 91] as the evaluation basis. Any pre-training uses the respective public
datasets of ImageNet [110] and Pneumonia [109]. Models will be selected to also run on the
MNIST database to verify the findings from the COVID-19 set. Together with the CIFAR-10
dataset [132], the MNIST database [17] is one of the standard image classification tasks. The
related work in PPML on these datasets can deliver more perspective on the achieved numbers
and feasibility of each approach, e.g. [41, 52, 53, 112, 85, 113, 114]. Since the shallow net-
work was designed for the MNIST task, this database gives an interesting comparison [112].
Consulting another dataset to test the existing hypotheses can be seen as an experiment in
itself.

Architectures. As previously presented in Section 4.7 the basic model architectures com-
pared in the experiments are the ResNet50, ResNet18, and shallow network. The most notable
difference between these models is their size. The inclusion of different sizes should test the
relation between size and performance in non-private and private training [124, 125]. Each
architecture changes according to the hypothesis tested by the experiment. The architectural
experiments aim to find the best-performing models for each category (non-private, DP-SGD,
PATE). The selected models across all approaches are then compared in a final evaluation in

14Available on GitHub: https://github.com/qubvel/classification_models
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Table 4.4.: Overview of the experimental pipeline on the COVID-19 database. Non-private, DP-SGD,
and PATE training form the root from where the tree branches out to the general architec-
tures, followed by the specific settings in the tree’s leaves. The diagram shows a total of 44
architectural experiments, with each path from the root (left) to a leaf (right) representing
a complete experimental setup.

Non-Private

ResNet18 Standard
Dropout

ResNet50 ImageNet
Pneumonia

Shallow network

Standard
Dropout

BN
BN-Pneumonia

DP-SGD

ResNet18

Standard
Dropout
ImageNet

ResNet50

Pneumonia
tanh

tanh-Dropout
tanh-Pneumonia

Shallow network

Standard
BN

BN-Dropout
BN-Pneumonia

tanh
tanh-BN

tanh-BN-Dropout
tanh-BN-Pneumonia

PATE-25
ResNet18 Standard

ImageNet
ResNet50 Pneumonia

Shallow network Standard

PATE-50 ResNet18
Standard
ImageNet
Pneumonia

Chapter 5 Section 5.3. Taking different base models enables seeing any influence implied by
architectures, especially size.

Privacy methods. As selected in Section 4.5, two PPML methods are evaluated. DP-
SGD and PATE compete with each other but also with the non-private baseline. Having at
least two different private approaches helps identify the ideal way of protecting the models
from MIAs while keeping high accuracy.

Privacy budgets. Since only privacy budgets of ε ≤ 1 represent good privacy guarantees,
ε = 1 is the main focus for the evaluation [35]. Still, evaluating other budgets gives more
insights into the performance on different privacy levels, and therefore the final evaluation
also considers budgets of ε = 0.1 and ε = 10. The setup shows the development of the
accuracy-privacy trade-off over different theoretical privacy levels. Further, including more
budgets can enable a clearer analysis of the budgets’ influence on MIA success. Privacy
analysis employs the moments account to track moments of privacy loss. In correspondence
to the COVID-19 dataset size, the privacy guarantee needs to satisfy δ ≤ 1/n with n = 9, 040,
resulting in δ = 1e−4. Table 4.5 lists the the relevant noise scales for each method and batch
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Table 4.5.: Needed noise scales to achieve privacy budgets ε of 10, 1, and 0.1 for the different methods
and batch size (i.e. architecture) combinations. With respect to the batch sizes listed in
Table 4.3.

Noise scale
Method Batch size ε = 10 ε = 1 ε = 0.1

DP-SGD
8 0.455 0.882 4.460
16 0.489 1.023 6.269
32 0.530 1.267 8.836

PATE 32 33.0 278.0 2720.0

size (i.e. architecture15) combination to achieve the wanted ε values. On the MNIST database,
the amount of data asks for δ = 1e−5 and accordingly changed noise scales.

MIAs. While measuring the success of the COVID-19 detection relies on testing the classi-
fier on relevant X-ray data, the actual privacy of an ML model is only vaguely captured. The
analysis of privacy budgets for a DP-ensuring algorithm just provides a theoretical upper
bound to the privacy loss. To directly monitor the proneness to attacks of an ML model,
the theoretical analysis is accompanied by the empirical study of the defense against MIAs.
Adding empirical results allows for a more realistic and practical approach to privacy eval-
uation. The proneness to attacks is one of the main evaluation criteria in this work because
one hypothesis is that DP reduces the risk of MIAs [48, 75, 76].

BN. ResNets already contain BN layers while the shallow network does not, at least in
its original version. Empirical investigations by Davody et al. in [133] revealed that it helps
with combating perturbation in DP-SGD. They argue that the invariance of the model to
weight matrix rescaling obtained from normalization methods offers robustness against noise
injection. For this experiment, after each trainable layer a BN layer is added to the shallow
network—i.e., after the convolutional and fully-connected layers.

tanh activation. A recent discovery in DP-SGD research was made by Papernot et al.
in [112]. They have determined that replacing the ReLU activation function with the tanh
function in model layers improves performance in DP-SGD. To achieve this performance
boost, they utilize the fact that the tanh activation generally results in smaller gradients
than the ReLU function. Smaller gradients reduce negative effects from the gradient clipping
in the DP-SGD algorithm because less information is lost. This advantage of tanh is only
relevant in DP-SGD training, and this experiment is hence only applied to DP-SGD models.

Dropout. Szegedy et al. state the performance benefits of dropout in [134] and specifically
focus on ResNet-type networks in their analysis. The regularizing effect of dropout can help a
model in overcoming overfitting and thereby in learning a better generalization [19]. However,
in his paper [135] Galinkin lays out that adding dropout layers in models could negatively
affect the defense against MIAs. At the same time, statements in [83] and [136] describe
dropout to be an effective measure against MIAs due to the mitigated memorization from
reduced overfitting. One experimental setup adds a dropout layer of 0.2, i.e., with a 20%
chance of dropout, before the output layer to test these hypotheses.

15With respect to the batch sizes listed in Table 4.3
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Pre-training. General pre-training is commonly used to improve performance in non-
private classification [111]. However, Abadi et al. [41] already found that public pre-training
specifically in a related domain can also improve performance in DP-SGD models. The pre-
training on the ImageNet and Pneumonia databases tests possible benefits for non-private
and private training. While the ImageNet resembles more of a general choice in this domain,
the Pneumonia database is closely related to the target task of COVID-19. Pre-training
experiments further unveil if the pre-training influences a model’s proneness to attacks.

PATE teacher numbers. When having fewer total teachers, the data share for a single
teacher increases accordingly, improving the resulting training performance. At the same time,
the teacher number also determines the maximum possible votes in the noisy aggregation
process. Thus, having fewer total teachers increases the influence of the introduced random
noise on the labels. Finding the sweet spot for the teacher number is difficult, especially since
there is no general formula—the optimal number changes with available data and privacy
needs. The experiments only compare teacher ensembles of 25 and 50 teachers to try and
maintain a viable trade-off regarding the small dataset. Section 4.8 offers more details to the
reasoning behind this choice.
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The evaluation is divided into several parts, beginning with a presentation of the metrics
used to evaluate model performance and privacy in Section 5.1. Section 5.2 then elaborates
on the individual experimental results regarding non-private, DP-SGD, and PATE models.
The most successful versions from these three settings are then matched against each other
in Section 5.3. Following on the COVID-19 database, Section 5.4 takes the detour to the
achieved results on the MNIST task. A final discussion of the findings and gained insights
from all experiments is presented in the concluding Section 5.5.

5.1. Metrics

Metrics are an essential tool for evaluating different experiments. They enable comparability
and allow the tracking of changes in their underlying measurements. To evaluate the success of
the various models, metrics need to assess their effectiveness. They must provide consistent
insights, with their significance independent of the single model. They thereby enable to
compare different approaches, making them fundamental for any evaluation.
For a non-private classification task, the most relevant numbers are tied to the performance

of a model. The better classification is the one that can best distinguish the target classes.
This ability is mainly quantified by the classification accuracy, the percentage of correctly
classified examples over all given examples. Nevertheless, this value alone might be misleading
because neural networks can have unexpected ways of achieving it. For example, if the one
class represented by a 1 is predominant in a dataset and constitutes 60% of all examples,
a neural network could just classify everything as a 1. It would reach an accuracy of 60%,
even though it could perform less effectively when predicting on differently balanced real
data [137]. Two other metrics are used to spot and analyze such problems: precision and
recall. Precision is the proportion of positive identifications that was actually correct, while
recall is the proportion of actual positives that were identified correctly. Both show how
relevant the model’s classification is. Seeing extreme values in either direction indicates a
possible problem. Precision and recall are not directly included in the evaluation but used
as checks to guarantee a correct training procedure for the models. There is a special case
of the model being unable to learn a functional classification in private training because the
induced random noise is too high. Such problems can also be spotted using precision and
recall since models still delivered some accuracy in the experiments, but precision and recall
were zero in such instances. Whenever this occurs in the evaluation, the accuracy is given as
NA, and no attacks are performed as it would not hold any significance. Also, considering
that a part of model learning is based on memorizing already seen examples, taking metrics
on the training setor even validation set is no indicator of actual performance [138]. Hence,
all metrics are calculated while training to monitor progress but are finally evaluated when
predicting on the test set.
The general measurement of DP is the privacy budget ε. It gives an upper bound for the

possible privacy loss and is solely based on theoretical analysis. However, the realistic bounds
in a given scenario might differ substantially from the theoretical worst-case. It further does
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not constitute a metric to assess the proneness to MIAs of a model, which is the main point of
the comparison regarding privacy in this work. For MIAs, the attacker’s AUC constitutes the
most representative metric available. It represents the probability that a randomly chosen
positive sample is ranked higher than a randomly chosen negative sample [84]. For MIAs
it says how successfully the attacker can recognize which example was part of the original
training set. An optimal defense results in an AUC of 0.5 or lower, which translates to
an attacker randomly guessing the membership of a sample. An AUC of 1 means that an
attacker can always identify the correct membership. Since the attacks are run 100 times
to counter variability, a 95% CI over all AUC results is used in the evaluation. To get a
bigger picture and investigate if DP with different privacy budgets represents different defense
levels against MIAs, another metric relates AUC and privacy budget. The empirical privacy
budget based on the AUC given as εAUC takes the AUC values achieved by the attacks and
uses them to estimate the corresponding privacy guarantee of the target model. An AUC
of 1.0 results in εAUC = ∞, while values lower than 0.5 translate to the perfect guarantee
of εAUC = 0. In between these boundaries, the epsilon is estimated based on the following
formula: εAUC = ln( AUC

1−AUC ). This notion is adapted from the recent work of [85], where they
propose this metric based on the attacker’s accuracy. With a value given as a privacy budget,
its comparison to the theoretical assumptions is more intuitive. Further, privacy budgets are
a finer gradable metric than the AUC scale. Using this specific metric, even the smallest
differences between models are exposed, and the proneness to MIAs can be directly related
to a privacy budget.

5.2. Evaluating with Experiments

The following three sections cover the experimental results for non-private, DP-SGD, and
PATE trained models. Each of these three settings is presented separately to first find the best
respective models in terms of accuracy and privacy. An evaluation spanning these extracted
models for each setting takes place in Section 5.3. The models are compared by the metrics
from the last Section 5.1, consisting of accuracy, εAUC , and to some extent, the different
privacy budgets ε.

5.2.1. Evaluating Non-Private Models

The evaluation starts by searching for the best non-private models situated at ε = ∞ that
define the baseline. The relevant tuning results are found in Table 5.1.

ResNet18. First, the focus is on finding the best ResNet18 variant, which might also
carry over to the ResNet50 because of its architectural similarities. When looking at the ac-
curacy as listed in Table 5.1, the ResNet18’s best-performing version received the ImageNet
pre-training, resulting in 94.0%. The standard version only reached 91.4%. In contrast to the
ImageNet pre-training, the experiment of adding dropout to the model slightly reduced accu-
racy compared to the standard version by 0.7%, while the pneumonia pre-training resulted in
an even steeper decrease in performance to 86.2%. The ImageNet dominance even carries over
to privacy, which is evaluated in the εAUC column of Table 5.1. The ImageNet variant delivers
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Table 5.1.: Overview of experimental results for non-private models. Models are matched by their test
accuracy in % and proneness to MIAs. The proneness is measured by the empirical privacy
budget regarding the AUC (εAUC) and is given as a 95% CI over 100 attacks. Non-private
training translates to ε =∞.

ε =∞
Model Variant Acc. εAUC

ResNet18

Standard 91.4% 0.21-0.24
Dropout 90.7% 0.22-0.26
ImageNet 94.0% 0.17-0.21
Pneumonia 86.2% 0.19-0.23

ResNet50 Standard 85.1% 0.23-0.26
ImageNet 97.6% 0.13-0.16

Shallow network

Standard 79.3% 0.09-0.12
Dropout 75.7% 0.12-0.16

BN 86.0% 0.13-0.16
BN-Pneumonia 86.4% 0.13-0.15

the best defense against the MIAs at εAUC = 0.17 − 0.21. Pneumonia pre-training lowered
the empirical budget regarding the standard model from 0.21-0.24 to 0.19-0.23. Dropout, on
the other hand, resulted in a model that is more prone to attacks with εAUC = 0.22− 0.26.

ResNet50. The ResNet50 results paint the same picture as the one for the ResNet18,
with dropout and pneumonia performing worse than the ImageNet. Because the dropout and
ImageNet experiments do not contribute new findings, Table 5.1 only includes the standard
version and the one pre-trained on ImageNet. The standard ResNet50 achieved 85.1% ac-
curacy and guaranteed empirical privacy of 0.23-0.26. The ImageNet pre-training ensured a
steep increase in performance, delivering the peak accuracy of 97.57%, and helped privacy
with a significant drop to εAUC = 0.13 − 0.16. As a difference to the ResNet18 version, the
ResNet50 pre-trained on ImageNet was found to perform better when lowering the starting
learning rate to 1e−5 instead of 1e−3. By that, the propagation of the parameter updates
through the many layers can be slowed down to better adapt each layer to the new task
before the pre-trained weights are overwritten [28].

Shallow network. The standard shallow network variant gives a strong empirical privacy
guarantee of 0.09-0.12 while only offering mediocre performance at 79.3%. Again, dropout
noticeably worsens the model’s results on both metrics. Adding BN to the standard model
significantly boosts accuracy by 6.7%, but also increases εAUC to 0.13-16, a comparable
increase to dropout. BN was mainly implemented as an experiment to improve DP-SGD
performance [133]. However, the performance lead compared to the standard version is large
enough to justify the slight rise in εAUC and lead to using it as the main non-private variant.
Therefore, pneumonia pre-training already uses a shallow network version incorporating BN.
The model combining BN and pneumonia pre-training sees the best shallow network accuracy
of 86.4% and faintly lowers the empirical privacy budget regarding the BN version from 0.13-
0.16 to 0.13-0.15. The standard shallow network stays the most secure.
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Summary. Winner in the non-private setting is the ResNet50 pre-trained on ImageNet,
giving the best performance overall with an accuracy of 97.57% paired with the best privacy
of the ResNet models at a 95% CI of εAUC = 0.13-0.16. The same settings also top the rank-
ings for the ResNet18 variants but cannot reach the equivalent ResNet50 levels. Solely its
standard version can best the ResNet50’s standard version. The standard ResNet18 performs
6.3% better than its ResNet50 equivalent, showing that more layers do not necessarily mean
better accuracy [124, 125]. The shallow network cannot compete in non-private performance,
even when adding BN and pneumonia pre-training. However, it delivers the same or better
privacy guarantees than the safest ResNet, down to a 95%-CI of εAUC = 0.09-0.12. In steep
contrast to the ResNets, pneumonia pre-training for the shallow network slightly improved
performance by 0.4%, while it slightly reduced the empirical privacy budget for all models.
A negative impact regarding accuracy and privacy was observed in all models when includ-
ing dropout. According to these results, the ResNet50 pre-trained on ImageNet constitutes
the best performing model for the non-private baseline, while the standard shallow network
represents the most secure model.

5.2.2. Evaluating DP-SGD Models

Table 5.2.: Overview of experimental results for DP-SGD models. Models are matched by their test
accuracy in % and proneness to MIAs. The proneness is measured by the empirical privacy
budget regarding the AUC (εAUC) and is given as a 95% CI over 100 attacks. The privacy
budget for the evaluation is set to ε = 1. If training did not result in a feasible model, the
accuracy is given as NA and no attacks are performed.

ε = 1
Model Variant Acc. εAUC

ResNet18

Standard NA —
Dropout NA —
ImageNet NA —
Pneumonia 71.2% 0.14-0.18

tanh 70.7% 0.14-0.17
tanh-Dropout 72.0% 0.15-0.18

tanh-Pneumonia 74.1% 0.14-0.17

ResNet50 tanh 71.7% 0.16-0.19
tanh-Pneumonia 73.5% 0.10-0.12

Shallow network

Standard NA —
BN 72.1% 0.14-0.17

BN-Dropout 69.7% 0.13-0.16
BN-Pneumonia 72.2% 0.10-0.13

tanh NA —
tanh-BN 70.9% 0.13-0.17

tanh-BN-Dropout 69.8% 0.13-0.16
tanh-BN-Pneumonia 72.4% 0.12-0.15

In the following, the proposed DP-SGD models are compared, now referring to Table 5.2.
In this first of two private settings, the highest number of model variants is evaluated, which
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is owed to the introduction of the tanh activation experiment. As suggested in Chapter 4
Section 4.9, the general evaluation of private models is done at ε = 1.

ResNet18. Looking at the first three ResNet18 variants using ReLU activation (standard,
dropout, and ImageNet), no feasible model is achieved. The only ReLU model to overcome this
hurdle is pre-trained on the pneumonia task with 71.2% and εAUC = 0.14-0.18, indicating
its superiority over the ImageNet pre-training in DP-SGD. Checking the other ResNet18
variants shows advantages from the tanh vs. the ReLU activation function since all tested
models using tanh result in working models. The respective standard tanh version shows
70.7% accuracy and thus ranks slightly behind the ReLU pneumonia model in performance
while delivering comparable privacy. When including dropout combined with tanh activation,
the model sees an increase in performance to 72%, outperforming the ReLU pneumonia model
by 0.8%. At the same time, dropout keeps almost the same proneness to attacks at 0.15-0.18.
The estimated privacy budget also stays at 0.15-0.17 when adding pneumonia pre-training
to the standard tanh ResNet18. Performance-wise, on the other hand, the tanh-pneumonia
variant finds the best result of 74.1%.

ResNet50. Again, only the relevant ResNet50 results are shown since they generally mimic
the findings from the ResNet18 versions due to their architectural similarities. Therefore,
the ResNet50 with tanh activation and the matching tanh-Pneumonia model are added to
the comparison. The tanh-Pneumonia variation is the most successful in performance and
privacy, reaching 73.5% and 0.10-0.12, respectively. The standard tanh model, on the other
hand, achieves 71.7% and an εAUC of 0.16-0.19

Shallow network. The most crucial improvement for the shallow network is the addition
of BN layers. Without these, neither the ReLU based nor the tanh based standard version
can conclude in a viable model. When included, the ReLU shallow network delivers 72.1%
and the tanh version 70.9%. The difference in their privacy results, however, is only marginal.
Adding dropout, the ReLU and tanh versions result in almost identical models with 69.7% vs.
69.8% in accuracy and 0.13-0.16 vs. 0.13-0.17 in εAUC . Accuracy differences between the two
models with pneumonia pre-training stay low with 72.2% for ReLU and 72.4% for tanh. The
privacy guarantees see a change from 0.10-0.13 to 0.12-0.15. The best performing model with
72.4% is the tanh-BN-Pneumonia variant, while the BN-Pneumonia candidate using ReLU
holds the best privacy.

Summary. This was the perfect setting for the shallow network to shine since smaller
models are meant to perform better in DP-SGD [124, 125]. However, the ResNets reign
superior in both evaluated metrics. The gap in accuracy between shallow network and ResNets
got minimal compared to the non-private setting, but the shallow network lost its privacy
advantage. The overall trend concerning the tanh vs. ReLU activation function in DP-SGD
shows a positive influence. There is only one case in the shallow network where the tanh
function resulted in a worse model than using ReLU. The ResNet50 achieves 1% higher
performance than the ResNet18 in the standard tanh version, but the best performer overall
is the ResNet18 tanh-Pneumonia with 74.1%. It thereby outperforms the respective ResNet50
variant by 0.6%, showing that its smaller size is no hindrance in this settings [124, 125]. The
ResNet50 version, on the other hand, is the most private model coming in at εAUC = 0.10-0.12.
Pneumonia pre-training gives irrefutable improvements in all tested cases and provides the
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best models on both metrics. The ImageNet lags behind and, in contrast to pneumonia pre-
training, could not achieve a feasible ReLU model. The inclusion of dropout leaves a mixed
impression in DP-SGD. When used in the shallow network, it worsens the accuracy while
improving the same metric in the ResNet18. Regarding privacy, dropout did not significantly
influence the models.

5.2.3. Evaluating PATE Models

Table 5.3.: Overview of experimental results for PATE models. The third column gives the average
test accuracy of PATE teacher models, which can be seen as the realistic upper bound
for the student. The privacy budget, in that case, is ε = ∞ since the values are taken
before the noisy aggregation. The last two columns then compare test accuracy in % and
proneness to MIAs regarding the final student models. The proneness is measured by the
empirical privacy budget regarding the AUC (εAUC) and is given as a 95% CI over 100
attacks. Here, the privacy budget for the experiments is set to ε = 10. If training did not
result in a feasible model, the accuracy is given as NA, and no attacks are performed.

ε = 10
Model Variant Teacher acc. Student acc. εAUC

PATE-25 Standard 76.0% 70.0% 0.14-0.18

ResNet18 ImageNet 46.1% 40.0% 0.10-0.14
Pneumonia 76.3% 72.0% 0.12-0.16

PATE-25 Standard 78.1% 75.0% 0.09-0.12
ResNet50 Pneumonia 79.9% 74.9% 0.07-0.10
PATE-25 Standard 54.0% 40.0% 0.17-0.20Shallow network

PATE-50 Standard 58.4% 61.0% 0.15-0.18

ResNet18 ImageNet 45.6% 40.0% 0.12-0.15
Pneumonia 58.0% 57.3% 0.16-0.19

Finally, the results for PATE, the second PPML method, are compared to find the best
settings for applying the algorithm on the task. Table 5.3 presents two differences to the
previous Table 5.2 for DP-SGD. First, a column for teacher accuracy is added, which lists the
average accuracy of the trained teacher ensemble before using them for the noisy aggregation
of the student data. The average teacher accuracy is a non-private result and can be seen as the
achievable upper bound for training the private student without noise. The second change is
that the evaluation takes place on ε = 10. The small dataset results in tiny training partitions
for each teacher, limiting their maximum feasible number. These restrictions entail that, at
ε = 1, the accuracy of the noisy aggregated labels was under 52% for all teacher setups. The
aggregated labels’ accuracy determines how many samples in the student dataset are labeled
correctly. The found 52% almost translate to randomly flipping the labels, hindering successful
student training. This poor result is due to the high noise scale needed to satisfy ε = 1 using
PATE. All students trained in this setting could not learn a working classification system
based on such inputs. A higher budget is needed to still compare and evaluate the PATE
models. Hence, this part uses ε = 10 to at least get an idea of the algorithm’s capabilities.
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Teacher number. It was impossible to train 50 teachers using a ResNet50, surpassing the
computational resources. As a result, the PATE-25 and PATE-50 methods are only matched
using the ResNet18. Still, comparing the results shows that the bigger data splits available
to each teacher when using 25 teachers outperform the 50 teacher settings. Looking at the
results, the PATE-25 standard and pneumonia models achieve about 18% better teacher per-
formance than the respective PATE-50 approaches (76% vs. 58%). The advantage of PATE-25
carries over to the student models delivering 70% and 72%, while the PATE-50 versions only
reach 61% and 57.3%. At the same time, PATE-25 keeps lower privacy budgets in both cases.
When comparing student accuracy, it is important to consider that the use of ε = 10 signif-
icantly reduces the noise impact down to the limit of additional 33 noisy votes in the noisy
aggregation. Thus, the low amount of 25 teacher votes available in the PATE-25 settings is
more relevant than at ε = 1, where PATE-50 could gain an advantage against the 278 noisy
votes.

Teacher and student model. Looking back at the non-private results in Section 5.2.1,
the best performing model was found to be the ResNet50 pre-trained on ImageNet data, while
ResNet18 on ImageNet came in on the second spot. The shallow network was not able to
reach the same accuracy levels. These findings were anticipated to hold in PATE because the
algorithm supports non-private training strategies. However, the ImageNet variants fall short
in the PATE setting, as can be concluded from the teacher accuracy in Table 5.3, where the
noiseless average accuracies over all teachers in the 25 and 50 teacher settings are compared.
As mentioned in the introducing paragraph to this section, the average teacher accuracy can
be seen as the realistic upper bound achievable for the student. There seems to be a stern
difference in which model can cope with the little data available to each teacher model. Even
though PATE internally uses non-private training, the ImageNet pre-training has disastrous
consequences on the average teacher accuracy. In PATE-25, the standard ResNet18 version
achieves 76%, with ImageNet implying a reduction of 30% to a result of 46.1%. Taking the
same setup in the PATE-50 case sees a loss of 12.8% from 58.4% to 45.6%. The results of
ImageNet pre-training indicate a strong negative impact on performance, probably due to
the small data fraction available to each teacher. On the other hand, the pneumonia pre-
training adds performance and privacy benefits in PATE-25. For the PATE-25 ResNet18 and
ResNet50 this means respective accuracy boosts of 0.3% and 1.8%. In contrast, PATE-50 on
the ResNet18 loses 0.4% due to pneumonia pre-training. Still, two observations carry over
from the non-private models in Section 5.2.1, which are the worse performance of the shallow
network that only reaches 54% teacher accuracy and the ResNet50 beating the ResNet18.
The ResNet50 achieves 78.1% and 79.9% teacher accuracy in PATE-25, while the ResNet18
rests at 76% and 76.3%.
The ImageNet and shallow network models fail to reach more than 40% accuracy when

looking at private student performance. The ResNet18 in the PATE-50 setting falls short of
its PATE-25 version, as described in the paragraph concerning the teacher numbers. When
comparing the ResNet student models in PATE-25, the ResNet50 outperforms the ResNet18
in both metrics. The ResNet50 versions deliver better privacy guarantees with a difference
of 0.05-0.06 compared to the ResNet18 candidates, while the difference in performance is
at 3-5%. The PATE-25 ResNet18 and ResNet50 see a similar reduction of 0.02 in εAUC
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when utilizing pneumonia pre-training. The ResNet18 model also sees an increase to 72%
accuracy coming from 70% in the standard variant. In contrast to the PATE-25 findings, the
PATE-50 student on the ResNet18 loses 3.7% and increases εAUC by 0.01 due to pneumonia
pre-training. The two best student models are delivered by PATE-25 using the ResNet50 in
standard and with pneumonia pre-training. Both achieved an almost similar student accuracy
of 75.0% and 74.9%, respectively. However, the pneumonia version lowered the εAUC by 0.02
giving 0.07-0.10 and surpassed the standard model by 1.8% in teacher accuracy with 79.9%.
The pneumonia version thus is the most private PATE model. Seeing the privacy advantage
and the minimal accuracy deviation, the PATE-25 pneumonia variant of the ResNet50 is the
best overall PATE candidate.
On a final note, the results generally show only a small gap between the average teacher

accuracy and the student accuracy. The selected best model of PATE-25 with ResNet50 on
pneumonia pre-training loses around 5% from its teacher accuracy when training the student.
The PATE-50 with ResNet18 on pneumonia pre-training reduces the gap to just 0.7%. When
looking at the row for the PATE-50 standard, one finds an anomaly probably stemming
from the randomness induced by the noise. The student outperformed the average teacher by
roughly 2.5% in this scenario. The impact on the aggregated labels must have flipped them
in such a fashion that the student could learn a better classification.

5.3. Best Results on the COVID-19 Database

Table 5.4.: Final results for the best models for COVID-19 detection regarding performance and pri-
vacy. Each model is evaluated across the different privacy budgets of ε =∞, ε = 10, ε = 1,
and ε = 0.1. PATE models give the average teacher accuracy as a non-private result and
use the PATE algorithm to train private student models. All other models are trained with
DP-SGD to achieve their privacy guarantees and otherwise use their standard non-private
results. The two columns for each privacy budget compare each model’s test accuracy in %
and their proneness to MIAs. The proneness is measured by the empirical privacy budget
regarding the AUC (εAUC) and is given as a 95% CI over 100 attacks. If training did not
result in a feasible model, the accuracy is given as NA, and no attacks are performed.

ε =∞ ε = 10 ε = 1 ε = 0.1
Model Variant Acc. εAUC Acc. εAUC Acc. εAUC Acc. εAUC

ResNet18 tanh-Pneumonia 77.5% 0.11-0.14 69.3% 0.19-0.23 74.1% 0.14-0.17 69.6% 0.13-0.16

ResNet50 ImageNet 97.6% 0.13-0.16 NA — NA — NA —
tanh-Pneumonia 77.9% 0.14-0.18 71.6% 0.16-0.19 73.5% 0.10-0.12 72.0% 0.17-0.20

Shallow network Standard 79.6% 0.09-0.12 NA — NA — NA —
PATE-25 Pneumonia 79.9% — 74.9% 0.07-0.10 40.7% 0.14-0.17 40.0% 0.17-0.20ResNet50

The final comparison on the COVID-19 task takes the best models from Section 5.2 re-
garding performance and privacy for each approach (non-private, DP-SGD, PATE). The best
models for the non-private setting are the ResNet50 on Imagenet and the standard shallow
network. For DP-SGD, the tanh-Pneumonia variants of ResNet18 and ResNet50 are selected,
and for PATE, the PATE-25 with ResNet50 on pneumonia pre-training. In addition to their
already seen results, all models are now evaluated on the privacy levels of ε =∞, 10, 1, and
0.1. The goal of ε = 1 rests as the primary focus, but multiple privacy budgets might reveal
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overall trends. The chosen values present each candidate from the non-private and different
private levels. The non-private result for PATE is taken from the average teacher accuracy,
while the private results state the resulting student performance. Comparably, the other non-
private results are obtained from non-private training, while the respective private models
use DP-SGD to reach their guarantees. The relevant results are accumulated in Table 5.4.
The evaluation starts by going over the results regarding each privacy budget before taking

in the whole picture. In the non-private setting of ε = ∞, the ResNet50 on ImageNet pre-
training keeps the best performance with 97.6% accuracy. The teachers of the PATE-25 model
deliver the second-best accuracy of 79.9%, which creates a gap of 17.7%. The shallow network
stays close behind at 79.6%. The models on tanh-Pneumonia come in last with 79.6% and
77.5%. The shallow network and tanh are experiments focused on improving the model in DP-
SGD, which explains their weak non-private performance. Still, the shallow network delivers
the best in class privacy at εAUC = 0.09-0.12. For its utility gains, the ResNet50 ImageNet
model increases the budget to 0.12-0.16, which should be a fair trade-off.
Stepping into the private domain beginning at ε = 10, the included models trained using

the ReLU activation function start to fail in learning a functional classification. The PATE
algorithm shows its efficiency by keeping the highest accuracy of 74.9%. The two ResNets
on their tanh-Pneumonia versions see bigger performance hits and only achieve 69.3% and
71.6%. The PATE model also states the best estimated privacy of 0.07-0.10, while the other
models only achieve 0.19-0.23 and 0.16-0.19.
At ε = 1, the tanh-Pneumonia models show their advantage. The ResNets trade blows,

with the ResNet18 tanh-Pneumonia being the best performing by reaching 74.1% and an
εAUC of 0.14-0.17. The corresponding ResNet50 achieves only 73.5% but exhibits the best
privacy at 0.10-0.12. PATE reaches the impractical point for the task resting at a mere 40.7%
due to the limited data and high noise scale.

A privacy level not included until now is ε = 0.1, which offers even tighter privacy bounds.
At this stage, PATE rests unfeasible at 40%, while both tanh-Pneumonia models change their
skill set. The ResNet18 variant becomes the most secure at 0.13-0.16 vs. 0.17-0.20 for the
ResNet50. The ResNet50, on the other hand, gives the best accuracy of 72% vs. ResNet18’s
69.6%.
In general, the ResNets on tanh-Pneumonia rule the lower two privacy levels, while PATE

shows promising results in the ε = 10 case. The fact that the ResNets’ results for tanh-
Pneumonia at ε = 10 are lower than on the more private levels is an anomaly. It could
reflect the randomness introduced by adding noise in the training process. A private model
that stays over or at 72% accuracy was found for all three privacy guarantees. For the goal
of ε = 1, the ResNet18 on the tanh-Pneumonia setup performed best with 74.1%. The
analog ResNet50 variant is slightly more private at 0.10-0.12, but with 0.14-17, the ResNet18
candidate conforms to the theoretical limit of 1. Comparing the best performing private results
to their respective model’s initial non-private performance, the gap seems manageable at 5%
in ε = 10, just 3.4% in ε = 1, and still only 5.9% in ε = 0.1. However, when comparing to
the ResNet50 on ImageNet, the non-private baseline, a vast accuracy gap of 23.5% is opening
when looking at ε = 1. Another finding worsens the resulting big utility-privacy trade-off.
When looking at the empirical privacy budgets going from ε = ∞ to ε = 0.1, the models’
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proneness to MIAs stays on roughly the same average level. The average estimated upper
bounds on each level are 0.15 for ε =∞, 0.17 for ε = 10, 0.15 for ε = 1, and 0.19 for ε = 0.1.
Models seem to randomly show higher and lower empirical bounds, unrelated to the chosen
theoretical privacy guarantee. Although a theoretical budget of ε = 0.1 is achieved in training,
all models in the ε = 0.1 setting surpass this threshold in the empirical study using MIAs.
The only entry where εAUC = 0.1 is achieved is by the PATE-25 model at the theoretical level
of ε = 10 with an interval of 0.07-0.10. It is important to note that the values in non-private
training already stay at a maximum of 0.18 and thus empirically satisfy the wanted guarantee
of ε = 1. Over all levels, the maximum reaches 0.23. In conclusion, the experiments on the
COVID-19 database show no consistent correlation between the theoretical DP guarantee
and the defense against MIAs.

5.4. Results on the MNIST Database

Table 5.5.: Summary of the results on the MNIST database. Each model is evaluated in non-private
and private, given as ε =∞ and ε = 1, respectively. The private variants are trained with
DP-SGD to achieve their privacy guarantees. For both settings, each model is compared
in test accuracy in % and their proneness to MIAs. The proneness is measured by the
empirical privacy budget regarding the AUC (εAUC) and is given as a 95% CI over 100
attacks.

ε =∞ ε = 1
Model Variant Acc. εAUC Acc. εAUC

ResNet18
Standard 99.3% 0.72-0.90 92.1% 0.18-0.21
ImageNet 99.6% 0.85-1.27 86.7% 0.19-0.21

tanh 98.8% 0.37-0.47 92.2% 0.19-0.22

Shallow network
Standard 98.5% 0.52-0.61 90.7% 0.22-0.25

BN 99.1% 1.05-1.45 95.4% 0.19-0.22
tanh-BN 98.8% 0.49-0.71 93.6% 0.19-0.21

For better comparison, models are selected to run experiments on the MNIST database [17].
There are several advantages to additionally evaluating models on this task. First, most
related work in PPML is based on research focusing on or including this dataset, e.g. [41,
52, 53, 112, 85, 113, 114]. Further, running the models on a different task can help verify
the experiments’ findings. The selected architectures include the ResNet18 as the ResNet
representative because it is less resource-hungry but almost as performant as a ResNet50.
The second contender is the shallow network since it was originally designed for the MNIST
database and should reach higher performance on the task [112]. Other than the standard
versions, the experiments test variants with ImageNet pre-training, tanh activation, and BN.
Pneumonia pre-training is not used on MNIST because it is unrelated to the task. Further,
PATE is excluded from this detour because of its more complex implementation by hand,
especially regarding the unlabeled student set. Since the goal is to gain general insights
on the relation between DP and MIA, there should be no drawbacks from not including a
specific method. Instead, private versions are achieved using DP-SGD. For this evaluation the
candidates are only matched on ε =∞ vs. ε = 1. The results are shown in Table 5.5, where
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models are compared by performance and estimated privacy when trained on the MNIST
database.
From the general non-private performance trends, it can be determined that MNIST is

an easier task than COVID-19 detection since a small-sized model like the shallow network
delivers almost the same performance as the ResNet18 with only a difference of 0.8%. Further,
all variants deliver very high non-private accuracy, with the worst still achieving 98.5%—
given by the standard shallow network. Familiarly to the COVID-19 task, ImageNet on the
ResNet18 performs best with 99.6%, outperforming the standard version by 0.3%. The shallow
network reaches its highest of 99.1% when including BN. However, the ImageNet in ResNet18
and the BN in the shallow network inflate the estimated privacy budget to an upper bound
higher than 1. BN more than doubles the shallow network’s estimated budget compared
to the standard model. The experiments of tanh for the ResNet18 and tanh-BN for the
shallow network achieve the same accuracy of 98.8%. In the ResNet18, tanh can roughly halve
the estimated privacy budget of the standard version from 0.72-0.90 to 0.37-0.47. However,
the non-private models generally suffer from considerably higher empirical privacy budgets
than on the X-ray task. While εAUC ≤ 0.26 applied to all non-private COVID-19 models in
Table 5.1, the non-private MNIST models see a maximum of 1.45. The average upper bound
for MNIST εAUC is found to be 0.90, where in contrast, the average for COVID-19 was 0.20.
Budgets are also subject to bigger fluctuations from model to model, with the best result
being εAUC = 0.37-0.47 and the worst coming in at 1.05-1.45.
Shifting the view to the private results at ε = 1, the shallow network with BN outperforms

the other models and delivers 95.4%—4.7% better than the standard result. The privacy
inflation seen from the non-private BN experiment can not be found on the private model
lowering the standard’s estimated guarantee of 0.22-0.25 to 0.19-0.22. The tanh-BN variant
gives the same privacy improvement but only reaches 93.6%. However, this result is still bet-
ter than the best ResNet18, which is the tanh model at 92.2%. It only slightly topped the
standard version by 0.1%. The ImageNet variant proves its negative performance impact in
DP-SGD from the X-ray findings by only delivering 86.7%. The shallow network outperform-
ing the ResNet18 shows that much smaller-sized networks can be better than deep networks
in DP-SGD. The MNIST candidates, in general, show a smaller gap between non-private
and private performance than in the COVID-19 task, with the difference between the best
two models being only 4.5%, whereas 23.5% was found before. When looking at the accom-
plished estimated privacy budgets at ε = 1, DP has substantial benefits for MIA defense in
all MNIST models. In the private setting, all models give roughly the same numbers, with
the maximum εAUC reduced to 0.25 from 1.45 in non-private. All models could at least halve
their own non-private result and still roughly halve the best non-private result of 0.37-0.47.
These improvements are reflected in the average estimated upper bound of 0.22 at ε = 1.
Compared to the non-private average of 0.90, the average was reduced by 76%. The initially
expected correlation between DP and MIA defense for the COVID-19 task could not be found
in Section 5.3 [48, 75, 76]. Running the same experiments on the MNIST task, the results
show an apparent reduction in MIA success related to the increased DP level.
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5.5. Discussion

The last sections went over numerous experiments and introduced many possible points
of discussion. This section revisits the findings of the evaluation to then deduct the key
takeaways.
The achieved non-private accuracy on COVID-19 vs. Normal detection of 97.6% by the

ResNet50 with ImageNet pre-training is close to the goal of 98% set from the literature
reviewed in Chapter 3 Section 3.1 [92, 93, 94, 95, 96]. The achieved non-private baseline
thus represents a feasible model in the context of related works. The best private model
lags behind accuracy-wise with a result of 74.1% when using the ResNet18 tanh-Pneumonia
at ε = 1. This results in an accuracy-privacy trade-off of 23.5%, which is within the limits
of 20.0-23.7% expected from other works in Chapter 3 Section 3.2 [71, 103]. Even though
the private approaches could not hold the non-private level of performance, the experiments
showed beneficial outcomes and helped improve the accuracy-privacy trade-off. Regarding
the expected relations between model size and performance by [124] and [125], the tested
architectures roughly correspond to the two hypotheses explained in Chapter 4 Section 4.7.
The first hypothesis states that in non-private training, the deeper model performs better,
which is shown in Section 5.2.1 by the ResNet50 being best and the ResNet18, in turn,
outperforming the shallow network. The best shallow network performs 11.2% worse than
the best ResNet50. The same is found in the non-private training featured in PATE, see
Section 5.2.3. The second hypothesis counter-intuitively states that bigger models do not
have the same benefits in DP-SGD. Section 5.2.2 mainly shows the ResNet18 outperforming
the ResNet50 in DP-SGD. However, the shallow network only stays behind 1.7% in this
setting, conforming to the hypothesis. The same results are found on the MNIST database,
where the deeper ResNets win in the non-private settings. However, as assumed from [112], the
shallow network then manages to achieve the best performance in DP-SGD and outperforms
the ResNet18.
Pre-training, in general, was the most successful experiment since it proved advantageous

in all models. However, each approach reacted differently to the two forms of pre-training.
Non-private models favoured the general ImageNet pre-training from [111], while DP-SGD
benefited more from the task-specific method (pneumonia) seen in [41]. The models for non-
private classification largely benefited from the ImageNet pre-training, resulting in the highest
accuracy of all approaches with 97.6%. Pneumonia pre-training instead reduced non-private
accuracy by 5%. However, pneumonia started to outperform ImageNet pre-training in the
DP-SGD setting and helped put out the best performing model at 74.1% for ε = 1. In a similar
notion, the ImageNet turned out to be catastrophic in PATE by losing up to 30% accuracy.
Pneumonia pre-training, on the other hand, improved the PATE-25 models’ performance and
privacy by up to 2% and 0.02 in εAUC . The findings for the ImageNet held on the MNIST
database, where it gave the best non-private accuracy but fell short in DP-SGD.
As an experiment meant to improve DP-SGD performance, tanh results should also only

be considered in this setting [112]. The change from ReLU activation function to tanh in
combination with pneumonia pre-training generally gained the DP-SGD models between 0.2-
3.1% in accuracy and is used in the best performing DP-SGD model. The positive impact of
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tanh in DP-SGD is also visible on the MNIST task, where it improved models by 0.1% and
2.9%.
The influence of dropout on the success of MIAs is left unclear by related work. While [135]

states an increased proneness to MIA from dropout, [83] and [136] describe dropout to be an
effective measure against them. Clearer is dropout’s positive effect on accuracy when used to
combat overfitting [19, 134]. In this work, however, dropout only once increased accuracy by
1.3%, while on the other hand, reducing the same metric by up to 3.6% in four other models.
Concerning MIAs, the inclusion of dropout resulted in a higher εAUC in three models and
a lower εAUC in two models. Further, the biggest change in the estimated budget was only
by 0.03-0.04. Based on these preliminary results, it is not possible to give a clear answer to
dropout’s influence.

When adding BN to the shallow network, expectations regarding [133] were to mainly
improve DP-SGD performance. Instead, it proved worthwhile in non-private and DP-SGD
training. BN, in all cases, improved the performance regarding the standard version. These
findings apply to the COVID-19 and the MNIST database.
Section 5.2.3 showed that the small COVID-19 dataset supports PATE using 25 teachers

better than using 50 teachers. On the other hand, it is difficult to make a concise decision
regarding PATE vs. DP-SGD since only ε = 10 could be evaluated for PATE. The showed
privacy-accuracy trade-off of 5% at that level is promising, but ultimately PATE could not
be successfully applied on the small dataset. Thus, DP-SGD is the best for this COVID-19
detection task—out of the two methods.
When comparing the achieved 74.1% at ε = 1 to the best non-private model, an accuracy-

privacy trade-off of 23.5% seems large, but the results gain more perspective when looking
at related works on COVID-19 detection. [103] used PATE at an ε close to 6, only reaching
an accuracy of 71%, while also instilling a trade-off of 23.7% to their respective non-private
model. The combination of DP-SGD and FL by [71] achieves 73.8% accuracy and reduces the
trade-off to 20%, but only delivers a weak guarantee of ε = 39.4. The only model outperform-
ing the presented 74.1% is the FedDPGAN from [106] which reaches a private model with
94.5% and even beats its respective baseline model by 1.5%. However, the evaluation does not
state the used privacy budget, leaving the comparability of the FedDPGAN results unclear.
In [61] the authors declare a lack of methods to track the theoretical privacy guarantees when
using DP-GANs, further hurting the reliability of the FedDPGAN. Thus, when only com-
paring with the privacy accounted approaches, the presented model at 74.1% outperforms
related works by 0.3% while even guaranteeing the tighter privacy bound of ε = 1. The result
is based on the ResNet18 tanh-Pneumonia model and privately trained with DP-SGD. The
literature review found no pure DP-SGD result on COVID-19 X-ray detection, making this
work the first to test this approach.
Figure 5.1 shows the evolution of accuracy across the evaluated privacy budgets on the

COVID-19 task (left) and the MNIST task (right). The COVID-19 results already show a
discrepancy at the non-private level. The best model at 97.5% is an outlier compared to the
other models that flock together at close to 80%. While the tanh-Pneumonia models keep
their performance relatively stable going into the lower privacy budgets, the ReLU models
and the PATE model see a substantial reduction in accuracy. The private performance seems
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Figure 5.1.: Graphical representations of the achieved classification accuracy on the COVID-19
database (left) and the MNIST database (right) across the different privacy levels. For
models on the COVID-19 set privacy budgets of ε = ∞, 10, 1, and 0.1 are shown, while
the MNIST graph only features ε = ∞ and 1. Each evaluated model is represented by a
coloured line and with crosses marking the obtained results. Colour coding for COVID-19
differs from the one used for MNIST.

to be related to the architectural experiments. Although the MNIST models’ non-private
performances concentrate in one spot and the accuracy-privacy trade-off is better than on
the COVID-19 set, the private results still present deviations in their accuracy. Again, there
are architectural experiments that outperform others; however, the MNIST task presents
winners different from the COVID-19 results. Not only was the shallow network able to
outperform the ResNet18, but the accuracy-privacy trade-off for MNIST is sitting at a mere
4.2%. This difference hints at the PPML or DP-SGD results being dependent on the given
task. The best solution on one task does not necessarily transfer to another task.
Up to this point, this section evaluated the accuracy-privacy trade-off on the relation

between classification accuracy and theoretical privacy budget ε. Regarding privacy metrics,
Section 5.1 introduced the empirical privacy budget εAUC , which is calculated from the results
of MIAs. Utilizing this metric showed that even the non-private models resulted in strong
privacy guarantees of εAUC ≤ 0.18, which is well under the wanted privacy budget of ε = 1.
This phenomenon was also present in [61], where the authors found their models without any
protection to already restrict a attacks to nearly random guessing membership inference. In
addition to the low initial values, private training at different privacy levels did not influence
the defense against MIAs. This fact is represented in Figure 5.2 (left), which shows the
development of the empirical privacy budget across the different theoretical budgets on the
COVID-19 task. The presented values for εAUC are the upper bound of the 95% CI after 100
attacks. The values fluctuate at each level but do not generally see a reduction with stronger
privacy guarantees. Instead, the defense against MIAs keeps an almost steady course. At
ε = 0.1 no model is able to hold the promised guarantee with even the most secure model
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Figure 5.2.: Graphical representations of the estimated privacy budget εAUC on the COVID-19
database (left) and the MNIST database (right) across the different privacy levels. The
presented values for εAUC are the upper bound of the 95% CI after 100 attacks. For
models on the COVID-19 set privacy budgets of ε = ∞, 10, 1, and 0.1 are shown, while
the MNIST graph only features ε = ∞ and 1. Each evaluated model is represented by a
coloured line and with crosses marking the obtained results. Colour coding for COVID-19
differs from the one used for MNIST.

giving an upper bound of εAUC = 0.13. The results from the COVID-19 data indicate no
consistent correlation between the theoretical DP guarantee and the defense against MIAs.
In contrast to this finding, according to [75] and [76] DP limits the success of MIAs by

definition and [48] found this to be true on the MNIST dataset. Figure 5.2 (right) illustrates
the results from the MNIST experiments in this work and shows how εAUC is affected by DP
on the MNIST dataset. The tested non-private models on MNIST suffer from significantly
higher estimated budgets than on the COVID-19 set. They also exhibit a wide fluctuation
from an upper εAUC bound of 0.47 up to 1.45. When training for DP at ε = 1 on the other
hand, the estimated budgets of all models are projected to roughly the same point with
an average upper bound of 0.22. Compared to the non-private average of 0.90, this means
the average was reduced by 76% due to DP. In conclusion, the same experiments on the
COVID-19 and MNIST tasks delivered opposite results. On the COVID-19 task, there was
no indication of a reduction in MIA success related to an increased privacy level from DP,
while the same assumption was evident on the MNIST task.
There are two takeaways from the opposing findings regarding the experiments on the

COVID-19 and MNIST sets. First, DP seems unnecessary when defending against MIAs in
COVID-19 detection. Using non-private models would give the same estimated proneness
while eliminating the accuracy-privacy trade-off from PPML. Additionally, better DP guar-
antees did not improve the COVID-19 models’ defenses further, as the trained ε = 0.1 was
not satisfied by the models’ εAUC results. Second, there is now more evidence of PPML being
heavily task-dependent. Not only do the best performing models differ from task to task, but
also the effectiveness of defense mechanisms like DP. DP did not correlate to MIA defense on
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the COVID task but drastically improved the defense on the MNIST task. At ε = 1, models
on the MNIST dataset presented the same defense against MIAs that could already be found
in the non-private COVID-19 models. It is untested if lesser privacy guarantees might already
achieve the same outcome for MNIST.
Differentially-private models at ε = 1 on both datasets delivered significantly lower esti-

mated privacy budgets than their theoretical analysis. Thus, DP provided better than ex-
pected defense at these levels but, in return, overbilled the model by unnecessarily increasing
the privacy-accuracy trade-off. The theoretical privacy guarantee given by ε is an upper
bound that can overestimate the realistic threat level [113]. In addition, it cannot convey
the difference in non-private MIA defense regarding the two datasets. The findings were in-
stead enabled by including the estimated privacy budgets based on the MIA results. The
εAUC is a more task-specific metric because it directly depends on the target model, while
ε solely depends on the settings of the training procedure. Therefore, the metric was essen-
tial for assessing model privacy in the evaluation. However, there is no clear explanation for
the differing results on the COVID-19 and MNIST tasks. In [75], Shokri et al. suggest that
classification tasks with more classes allow more successful MIAs. This difference could be a
factor with only two classes in the COVID-19 detection and ten classes in the MNIST task.
In conclusion, the evaluation showed no improvement of MIA defense from DP on the

COVID-19 task. The non-private models already exhibited the same repelling properties as
the private models, and at ε = 0.1 no model was able to hold the promised guarantee with
even the most secure model giving an upper bound of εAUC = 0.13. Thus, when solely looking
for MIA defense, there is no drawback in taking the best non-private model in the form of the
ResNet50 with ImageNet pre-training, which achieved 97.6% accuracy. When a theoretical
privacy guarantee is needed, private DP-SGD training for ε = 1 delivers the best private
model at 74.1% accuracy. It uses a ResNet18 pre-trained on pneumonia X-rays while also
changing the ReLU activation function to the tanh function. Even though the accuracy-
privacy trade-off of 23.5% is significant, the model performs 0.3% better than related work
while keeping much tighter privacy guarantees [71, 103]. Ultimately, the conflicting findings
from the MNIST database indicate that PPML (or DP-SGD) is heavily task-dependent, and
thus research on one dataset might not carry over to others.
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This work aims at the privacy-preserving detection of COVID-19 from chest X-ray images.
While the detection task asks for ML in the form of an image classifier to distinguish between
COVID-19 and Normal (no findings) in a patient’s chest X-rays, the privacy part focuses on
mitigating exploitative attacks that could compromise sensitive patient data. The primary
attack of interest is the MIA, enabling an attacker to predict which samples were part of
a model’s training set. The ML approach uses CNNs to train a classification model on the
COVID-19 Radiography Database [90, 91]. The privacy preservation is then implemented
through PPML methods that guarantee DP at given privacy budgets ε. By gaining the DP
attribute, the models should be less prone to MIAs [48, 75, 76].
The evaluation in Chapter 5 surveyed 44 architectural experiments16 on the COVID-19

Radiography Database. The training procedures were composed of two different PPML al-
gorithms, DP-SGD and PATE, in addition to non-private training. Next to the performance
metric of classification accuracy, a privacy metric is essential to evaluate models for the given
task. The privacy budget ε constitutes a theoretical privacy guarantee in the form of an up-
per bound. The real threat from attacks, on the other hand, is better represented using an
estimated privacy budget εAUC that is directly based on the success of performed MIAs [85].

In contrast to the expectations from [48, 75, 76], DP showed no improvements in MIA
defense on the COVID-19 detection task. Instead, the non-private models already presented
the same repelling properties as the private models on all tested privacy levels. Addition-
ally, at ε = 0.1 no private model was able to hold the promised guarantee when compared
to their εAUC . Therefore, the best way to design a private image classification model de-
tecting COVID-19 from chest X-ray images depends on the specific privacy needs. In terms
of empirically estimated MIA defense, the non-private models are as secure as the private
models. Thus, if only the defense against MIAs is of concern, the non-private ResNet50 with
ImageNet pre-training achieving 97.6% classification accuracy is the best choice. Private DP-
SGD training for ε = 1 is a more sensible alternative when a theoretical privacy guarantee is
needed. The showed privacy-accuracy trade-off from using PATE is promising, but ultimately
the algorithm could not be successfully applied using ε = 1 on the small COVID-19 dataset.
The best private DP-SGD model reaches 74.1% accuracy and uses a ResNet18 pre-trained
on pneumonia X-rays while also changing the ReLU activation function to the tanh func-
tion. Even though the accuracy-privacy trade-off of 23.5% is significant, the model performs
0.3% better than related work and keeps much tighter privacy guarantees17 [71, 103]. Ul-
timately, the conflicting findings from the additional experiments on the MNIST database,
where DP significantly increased MIA defense, indicate that PPML (or DP-SGD) is heavily
task-dependent. Thus, research on one dataset might not carry over to others.
A brief outlook into possible future work concludes the last part of this section. A possible

candidate for further evaluation is the FedDPGAN [106] model that, as of now, produces the
best private COVID-19 detection results with 94.5% but lacks comparability due to not giving

16Without counting experiments on additional privacy levels or on a different dataset (MNIST).
17This work implements ε = 1 and reaches 74.1%. The next best performing result is 73.8% in [71] and uses

ε = 39.4. [103] states an ε close to 6 but only reaches an accuracy of 71%.
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the used privacy budget. Therefore, benchmarking the proposed model in a traceable and
comparable environment like in this work would give more context to the result. In general,
future ventures can benefit from implementing frameworks that increase data set size. These
frameworks involve GANs synthesizing more data and FL enabling hospitals to securely
train a joint model from their local data. Comparability is an issue in PPML research that
could be improved by common privacy evaluations across different works. Further, estimating
the empirical privacy risks through attacks should be established. Assessing possible threats
allows to choose the appropriate privacy budget and thus, can optimize the accuracy-privacy
trade-off. There are also general considerations for ML on medical images. As [139] proposes,
performing lung segmentation on the X-ray images before training for the detection task
might mitigate the issue of ML models picking non-disease-related markers from the images.
The relevance of this additional step could be evaluated using heat maps that highlight what
the ML model sees as the most relevant areas in the X-ray. Finally, these markings could
further support professionals in screening for COVID-19 in the images [1].
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